
SCHED_DEADLINE:
What's next?

Claudio Scordino, Evidence Srl
Juri Lelli, Red Hat



Outline
● Already mainline:

○ Bandwidth reclaiming (GRUB)

● On-going development:
○ Schedutil integration (GRUB-PA)
○ Hierarchical/group scheduling 
○ Semi-partitioned scheduling

● Under discussion:
○ Reclaiming by demotion
○ Throttled signaling
○ (Single CPU) affinity
○ Unprivileged usage 
○ Proxy execution/M-BWI 



Bandwidth reclaiming (GRUB)



Bandwidth reclaiming
● PROBLEM

○ tasks’ bandwidth is fixed (can only be changed with sched_setattr())
○ what if tasks occasionally need more bandwidth?
○ e.g., occasional workload fluctuations (network traffic, rendering of particularly heavy frame, etc.)

● SOLUTION
○ Bandwidth reclaiming: allow tasks to consume more than allocated
○ up to a certain maximum fraction of CPU time
○ if this doesn’t break others’ guarantees



GRUB
● Greedy Reclamation of Unused Bandwidth (GRUB1,2)
● Replaces Constant Bandwidth Server (CBS)
● Developed by: Scuola Sant’Anna, Evidence Srl, ARM Ltd
● Mainline since v4.13
● Pretty good documentation: Documentation/scheduler/sched-deadline.txt

1 G. Lipari, S. Baruah, Greedy reclamation of unused bandwidth in constant-bandwidth servers, 12th IEEE Euromicro Conference on Real-Time Systems, 2000.
2 L. Abeni, J. Lelli, C. Scordino, L. Palopoli, Greedy CPU reclaiming for SCHED_DEADLINE,  Real-Time Linux Workshop (RTLWS), Dusseldorf, Germany, 2014.



GRUB task state diagram

Active 
Contending

Active Non 
Contending

Inactive wake up block

0-lag timer

wake up

Reclaimed
bandwidth

Per-runqueue
active bandwidth
(running_bw )

Per-runqueue
total bandwidth

(this_bw)



GRUB reclaiming

Active 
Contending

Active Non 
Contending



GRUB reclaiming

Active 
Contending

Active Non 
Contending

Inactive



GRUB reclaiming

Active 
Contending

Active Non 
Contending

Inactive



GRUB reclaiming

Active 
Contending

Active Non 
Contending

Inactive

dq                    Ui
―   =  -max     ―     ,    1 - Uinact - Uextra 
dt                     Umax



GRUB exp. results1

C
D

F

Response time (ms) T2’s reservation period

● Task1 (6ms, 20ms) constant 
execution time of 5ms

● Task2 (45ms, 260ms) 
experiences occasional variances 
(35ms-52ms)

1 Experimental results from J. Lelli, SCHED_DEADLINE: It’s Alive!, ELC 2017.



GRUB exp. results1

C
D

F

Response time (ms) T2’s reservation period

● Task1 (6ms, 20ms) constant 
execution time of 5ms

● Task2 (45ms, 260ms) 
experiences occasional variances 
(35ms-52ms)

1 Experimental results from J. Lelli, SCHED_DEADLINE: It’s Alive!, ELC 2017.

Cumulative Distribution
Function (CDF):
probability that Response time will be 
less or equal to x ms



GRUB exp. results1

C
D

F

Response time (ms) T2’s reservation period

● Task1 (6ms, 20ms) constant 
execution time of 5ms

● Task2 (45ms, 260ms) 
experiences occasional variances 
(35ms-52ms)

1 Experimental results from J. Lelli, SCHED_DEADLINE: It’s Alive!, ELC 2017.

Original CBS:
T2’s response time bigger than 
reservation period (~25%)



GRUB exp. results1

C
D

F

Response time (ms) T2’s reservation period

● Task1 (6ms, 20ms) constant 
execution time of 5ms

● Task2 (45ms, 260ms) 
experiences occasional variances 
(35ms-52ms)

1 Experimental results from J. Lelli, SCHED_DEADLINE: It’s Alive!, ELC 2017.

GRUB:
T2 always completes before
reservation period (using
bandwidth left by T1)



Schedutil integration (GRUB-PA)



Schedutil integration1 (GRUB-PA)
● Currently, schedutil runs SCHED_DEADLINE tasks at maximum CPU frequency

● Key idea: extend schedutil to SCHED_DEADLINE tasks 
○ GRUB-PA2: use the bandwidth reclaimed by GRUB to lower the CPU frequency
○ How: just set the CPU frequency equal to the current bandwidth
○ Reservation’s runtime scaled according to frequency and CPU max capacity

● Design choices (discussed at OSPM):
○ Use running_bw for frequency scaling rather than this_bw (more aggressive) 
○ Use current CPU frequency for accounting (even if changed by other scheduling classes)
○ Set kthread to SCHED_DEADLINE with SCHED_FLAG_SPECIAL

● Latest RFC sent to LKML on July 5th3

1 Work partially supported by ARM and the HERCULES Project, funded by European Union's H2020 program under grant agreement No. 688860.
2 C. Scordino, G. Lipari, A Resource Reservation Algorithm for Power-Aware Scheduling of Periodic and Aperiodic Real-Time Tasks, IEEE Transactions on Computers, 2006.
3 https://lkml.org/lkml/2017/7/5/139



GRUB-PA vs tip on a 4-core imx6 (Cortex-A9)
Reservation’s runtime:

Reservation’s period:
Task’s runtime:

Task’s period:
Number of tasks:

10 - 100 msec
100 msec

90% of reservation’s runtime
100 msec

1 task

10 - 100 msec
100 msec

100% of reservation’s runtime
100 msec

1 task

10 - 100 msec
10 msec

90% of reservation’s runtime
10 msec

1 task

10 - 100 msec
100 msec

90% of reservation’s runtime
100 msec
4 tasks



GRUB-PA: open issue

● Higher amount of deadline misses than schedutil for short periods on 
platforms with too long frequency switch

○ E.g. period 10 msec on Odroid XU4 (3.5 msec for a frequency switch)

● It can be mitigated by:
○ Ignoring rate_limit for urgent requests of frequency increase (by SCHED_DEADLINE)
○ Buffering an urgent request arriving when kthread is in progress

● It could be eliminated by using this_bw rather than running_bw
○ Q. Is a knob in sys/ a viable solution ? 



Hierarchical/group scheduling



Hierarchical/group scheduling
● First RFC sent on LKML on March ‘17 by Scuola Sant’Anna1

○ Groups of tasks can be scheduled within a SCHED_DEADLINE reservation
■ First level is EDF, second level is FIFO/RR

○ Cgroup interface
○ 3 patches, quite big:

1) removing the SCHED_RT-related cgroup mechanisms
2) new hierarchical throttling for SCHED_RT tasks that exploits SCHED_DL
3) RT cgroups migration of a throttled rq, seeking for available bandwidth on other CPUs

● Should eventually supplant RT throttling

1 https://lkml.org/lkml/2017/3/31/658



Hierarchical/group scheduling
● Usage:

● Behavior: 
○ A CPU-hog task with runtime=10ms and period(=deadline)=100ms runs for 10ms on each 

CPU before being throttled

● Unclear how to proceed
○ Q. Do we want a different API/behavior ?

     Or do we first want to focus on other (more urgent) features for SCHED_DEADLINE ?

mkdir /sys/fs/cgroup/cpu/rt1
echo 100000 > /sys/fs/cgroup/cpu/rt1/cpu.rt_period_us
echo 10000 > /sys/fs/cgroup/cpu/rt1/cpu.rt_runtime_us
echo $tid1 > /sys/fs/cgroup/cpu/rt1/tasks
echo $tid2 > /sys/fs/cgroup/cpu/rt1/tasks
chrt -r -p $rtprio1 $tid1
chrt -r -p $rtprio2 $tid2



Semi-partitioned scheduling



The semi-partitioned scheduler
There are some cases in which a feasible task set is not scheduled by neither 
global or partitioned schedulers. For instance:



What does the academy have to say about it?
● B. Brandenburg and M. Gül, “Global Scheduling Not Required: Simple, 

Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned 
Reservations” shows that:

○ “usually ≥ 99% schedulable utilization — can be achieved with simple, well-known and 
well-understood, low-overhead techniques (+ a few tweaks).”

○ This work, however, is not applicable for Linux because the workload is static

● D. Casini, A. Biondi, G. Buttazzo, “Semi-Partitioned Scheduling of Dynamic 
Real-Time Workload: A Practical Approach Based on Analysis-Driven Load 
Balancing.”

○ This paper relaxes the first, to be able to deal with dynamic workload.



How good is this online semi-partitioned scheduler?



How does semi-partitioned place tasks?



Pin as much task as possible



When it is not possible to pin, it splits a task.



Voilà!



Semi-partitioned scheduler development
● It changes how the deadline scheduler deals with multi-processor.

○ It is not a new scheduler, but an improvement in the Deadline scheduler

● When a task switches to the DL class…
○ The heuristics select where to put the task, and how to split it, if needed.
○ “Scheduling reservations” are assigned to the DL entity.

■ It is like if a task could have multiple DL entities.
■ Each reservation is mapped to a single CPU.
■ The scheduler schedules the reservations - not the entity.

● For example….



Semi-partitioned scheduler status

● Benefits:
○ All the RT problems are reduced to single-core!
○ The heuristics run only when setting attr/affinity/hotplug - less runtime overhead

For instance:
■ there is no need to pull tasks, just push!
■ Migrations are bounded to M, for the system!

○ Tasks are mostly pinned to a single CPU!
○ Affinities come for FREE! YAY! 

● Status of the scheduler:
○ We are seeing the theoretical results in the reality!
○ But, it stills a “WiP”, we are working in a paper about it!

● Points to be discussed:
○ The - real - admission control must to run in the kernel
○ The design of the scheduler considers implicit deadline - likewise the current… so.



Other features...



Misc
● Reclaiming by demotion

○ Requested by Android
○ Patch available on top of group scheduling

■ At the end of the budget, the task is demoted rather than migrated
○ Q. Do we want a patch independent from group scheduling (i.e. for single tasks) ?

     Or has it been superseded by GRUB ?

● Throttled signaling
○ User-level signal to inform the task about throttling
○ Patch available, easily portable on latest kernels
○ Q. Do we want/need it ?



Misc (2)
● (Single CPU) affinity

○ Currently implemented through semi-partitioned scheduling
○ Need to figure out the implications on admission control
○ Q. Do we want a patch independent from semi-partitioned scheduling ?

● Unprivileged usage
○ Executing SCHED_DEADLINE tasks w/out root privileges



BWI/Proxy execution
● First prototype of BWI implemented by Juri on an outdated kernel

○ Evidence then rebased on a newer kernel but the activity has been temporarily stopped

● We’ve heard that Peter started working on this
○ Q. Do you have some code to share with us ?
○ The group in Pisa is willing to collaborate on development/testing



Conclusions
● Schedutil integration almost ready for mainline

○ Quite good results
○ Just need to figure out how to deal with short periods (using this_bw is a viable option ?)

● The group in Pisa (Sant’Anna, Evidence) is willing to collaborate on BWI

We need a list of priorities for focusing on
the most urgent features


