SCHED DEADLINE:
What's next?

Claudio Scordino, Evidence Srl
Juri Lelli, Red Hat

Outline

e Already mainline:
o Bandwidth reclaiming (GRUB)

e On-going development:
o Schedutil integration (GRUB-PA)
o Hierarchical/group scheduling
o Semi-partitioned scheduling

e Under discussion:
Reclaiming by demotion
Throttled signaling
(Single CPU) affinity
Unprivileged usage
Proxy execution/M-BWI

o O O O O

Bandwidth reclaiming (GRUB)

Bandwidth reclaiming

e PROBLEM

o tasks’ bandwidth is fixed (can only be changed with sched_setattr())
o what if tasks occasionally need more bandwidth?
o e.g., occasional workload fluctuations (network traffic, rendering of particularly heavy frame, etc.)

e SOLUTION

o Bandwidth reclaiming: allow tasks to consume more than allocated
o up to a certain maximum fraction of CPU time
o if this doesn’t break others’ guarantees

GRUB

Greedy Reclamation of Unused Bandwidth (GRUB'?)

Replaces Constant Bandwidth Server (CBS)

Developed by: Scuola Sant’Anna, Evidence Srl, ARM Ltd

Mainline since v4.13

Pretty good documentation: Documentation/scheduler/sched-deadline.txt

'G. Lipari, S. Baruah, Greedy reclamation of unused bandwidth in constant-bandwidth servers, 12th IEEE Euromicro Conference on Real-Time Systems, 2000.
2 L. Abeni, J. Lelli, C. Scordino, L. Palopoli, Greedy CPU reclaiming for SCHED DEADLINE, Real-Time Linux Workshop (RTLWS), Dusseldorf, Germany, 2014.

Per-runqueue
total bandwidth
(this bw)

e e e e e e

o M e e e e e e

wake up

Active

Contending

wake up block

Active Non

Reclaimed -lag Contending
bandwidth

Per-runqueue
active bandwidth
(running bw)

o e o o e e o o e e e

o o o o o e e o o

~

GRUB reclaiming

Taskl A Task blocks
SCHED_DEADLINE
runtime = 4 msec
period =8 msec : : | | |) >
] 2 3 4 5 6 7 8 time (msec)
Active i Active Non
Contending 1 Contending
Task2
SCHED_DEADLINE
runtime = 4 msec
period =8 msec T T T T 1 >
1 2 3 4 5 6 7 8
100% $ this_bw
1 1)

-
N -
w

N

=
o=
~—
o=

GRUB reclaiming

Task1l

A Task blocks 0-lag time
SCHED_DEADLINE
runtime = 4 msec
period =8 msec : | : : :) >
1 2 3 4 > 6 7 8 time (msec)
Active i Active Non | Inactive
Contending 1 Contending
1
Task2
SCHED_DEADLINE |
runtime = 4 msec
period =8 msec T T T >
1 2 3 4 5 6 7 8
100% * this_bw
1 1)

i
o
w

IN

U1
o
N -
o0

GRUB reclaiming

Taskl A Task blocks 0-lag time
SCHED_DEADLINE
runtime = 4 msec
period =8 msec : | : : :) >
! 2 3 4 > 6 7 8 time (msec)
Active i Active Non | Inactive
Contending 1 Contending
' [scHED_FLAG_RECLAIM 5% bandwidth for
! to reclaim bandwidth execution of non RT task
' | unused by blocked RT tasks (i.e. RT limits)
Task2 !
SCHED_DEADLINE |
runtime = 4 msec =T 0 ™1
period =8 msec T | J
1 2 3 4 5 6 7
100% * this_bw

=
N =
w -
o
=
o=
~—
o=

Task utilization

GRUB reclaiming

dq U
— = -max<x— , 1-U__ -
Taskl A Task blocks 0-lag time dt U inact ~ ~ extr
SCHED_DEADLINE max
runtime = 4 msec
period =8 msec : .) > - / |
1 2 3 4 _g: I6 ; 8 time (msec) Maximum Per-rq
. ! . ! reclaimable Per-rq extra reclaimable
Actlve' ! Active NQn ! Inactive utilization inactive utilization
Contending 1 Contending (depends on utilization (depends on RT
| _ RTlimits) limits)
' [scHED_FLAG_RECLAIM 5% bandwidth for
! to reclaim bandwidth execution of non RT task
' | unused by blocked RT tasks (i.e. RT limits)
1
Task2 !
SCHED_DEADLINE |
runtime = 4 msec T
N I
period =8 msec T r
1 2 3 4 5 6 7
i
1
1
4‘ |
1
100% this_bw

=
N =
w -
o
=
o=
~—
o=

GRUB exp. results’

" Experimental results from J. Lelli, SCHED_DEADLINE: It's Alive!, ELC 2017.

Response time (ms)

1
1
1 E If"'_-i.— I ! ! I r{a-
[1
e Task1 (6ms, 20ms) constant i ! :®
execution time of 5ms 08 H f ! d
e Task2 (45ms, 260ms) & 8 '
experiences occasional variances ! e
| o !
(35ms-52ms) 06 | & | —
E @ l
L E H !
5 7 F :
0.4 [i I 2
; ® I
' i :
[? i l
: o I
I I
0.2 E ® | .
; ® Task1,CHs [
| ¢ Task2, CHS O
1 : Task 1, GRUB =
H v Task 2, GRUB
0 ‘ ‘ | I | ! L
] 50 100 150 200 250

300

T2’s reservation period

GRUB exp. results’

300

1
1
1 E I"'_ I ! I ! I r{a—
[by
e Task1 (6ms, 20ms) constant i ! :®
execution time of 5ms 08 || | ! :
e Task2 (45ms, 260ms) & o '
experiences occasional variances ! e
| o !
(35ms-52ms) 06 |- @ | i
E o l
L : i !
SIF P :
da L : I -
| ® l
' i :
. ' . . [i] i I
probability that Response time will be ; 8 I
I I
less or equal to x ms 02 ® I i}
; ® Task1,CHs [
g ; Task2,CBS (O
1 : Task 1, GRUB =
H v Task 2, GRUB
0 - ‘ | L | ! -
] 50 100 150 200 250

" Experimental results from J. Lelli, SCHED_DEADLINE: It's Alive!, ELC 2017.

Response time (ms)

T2’s reservation period

GRUB exp. results’

e Task1 (6ms, 20ms) constant
execution time of 5ms

e Task2 (45ms, 260ms)
experiences occasional variances
(35ms-52ms)

CDF

Original CBS:

reservation period (~25%)

Gl
i
T2's response time bigger than s E
®
4]

" Experimental results from J. Lelli, SCHED_DEADLINE: It's Alive!, ELC 2017.

Response time (ms)

= 1
I@ I _
£ 1
[N} I
& I
II'JrI I
; ! .
® 1
i !
! 1
{'b 1
frl I =~
[I
CL:') Task 1, CHS []
3 Task2, CHS (O
[Task1l,GRUE W
‘-' | , | . Task 2, GIRLIB e
50 100 150 200 250 : 300

T2’s reservation period

GRUB exp. results’

1 E I""_ ¥ ! I ! : EE)-
n— ¢ |
e Task1 (6ms, 20ms) constant 5 i :®
execution time of 5ms g '
e Task2 (45ms, 260ms) & 8 ig)
experiences occasional varianges :
(35ms-52ms) 06 o | —
¢ |
L
L :
04 H I 2
. !
GRUB: 4 !
! : 1
T2 always completes before o E f’ I |
reservation period (using E é ek, CE;S 0
bandwidth left by T1) g ; e B
i ; Task2, GRUB @
2 ('J'- ‘ 50 100 150 200 250 : 300
Response time (ms) T2’s reservation period

" Experimental results from J. Lelli, SCHED_DEADLINE: It's Alive!, ELC 2017.

Schedutil integration (GRUB-PA)

Schedutil integration! (GRUB-PA)

e Currently, schedutil runs SCHED DEADLINE tasks at maximum CPU frequency

e Key idea: extend schedutil to SCHED DEADLINE tasks

o GRUB-PAZ: use the bandwidth reclaimed by GRUB to lower the CPU frequency
o How: just set the CPU frequency equal to the current bandwidth
o Reservation’s runtime scaled according to frequency and CPU max capacity

e Design choices (discussed at OSPM):
o Use running bw for frequency scaling rather than this bw (more aggressive)

o Use current CPU frequency for accounting (even if changed by other scheduling classes)
o Set kthread to SCHED_DEADLINE with SCHED_FLAG_SPECIAL

e Latest RFC sent to LKML on July 5th®

" Work partially supported by ARM and the HERCULES Project, funded by European Union's H2020 program under grant agreement No. 688860.
2 C. Scordino, G. Lipari, A Resource Reservation Algorithm for Power-Aware Scheduling of Periodic and Aperiodic Real-Time Tasks, IEEE Transactions on Computers, 2006.
3 https://lkml.org/lkml/2017/7/5/139

GRUB-PA vs tip on a 4-core imx6 (Cortex-A9)

Reservation’s runtime:
Reservation’s period:
Task’s runtime:
Task’s period:
Number of tasks:

10 - 100 msec
100 msec
90% of reservation’s runtime
100 msec
1 task

10 - 100 msec
100 msec
100% of reservation’s runtime
100 msec
1 task

70000

65000

55000

50000

Total energy consumption (mJ)

0 20 40 60 80 100
Reservation total bandwidth (%)
= Performance = = = Schedutil GRUB-PA

Total energy consumption (mJ)

/4
’
Lot
70000 1/ Poadd
65000 J -
60000 o
o f’
55000 ‘“_//
50000 T T T T 1
o 20 40 60 80 100
Reservation total bandwidth (%)
----- Performance = = = Schedutil GRUB-PA

10 - 100 msec
10 msec
90% of reservation’s runtime
10 msec
1 task

10 - 100 msec
100 msec
90% of reservation’s runtime
100 msec
4 tasks

Total energy consumption (mJ)

70000 ~
-
£5000 = T b
: :\;"'/_ =
50000 — et
55000 -';.’7/(
50000 —
45000 T T T T 1
o 20 40 60 80 100
Reservation total bandwidth (%)
...... Performance e = = Schedutil GRUB-PA

Total energy consumption (m1J)

150000
130000
110000
90000
70000
50000 T T T T 1
0 20 40 60 80 100
Reservation total bandwidth (%)
sssuss Performance = = = Schedutil GRUB-PA

100

Percentage of deadline misses (%)

70

50

30

10

8 = B
INEEEEENENS

10 20 30 40 50 60 70 80 S0 100

Reservation total bandwidth (%)

HPerformance @ Schedutil B GRUB-PA

Percentage of deadline misses (%)

10 20 30 40 50 60 70 B0 S0 100

Reservation total bandwidth (%)
m Performance @ 5chedutil = GRUB-PA

Percentage of deadline misses (%)

10 20 30 40 50 60 70 B8O 90 100

Reservation total bandwidth (%)

®Performance W Schedutili ®GRUB-PA

Percentage of deadline misses (%)

20 &
|

§-.
g T 1T 11

T
10 20 30 40 50 60 70 B0 90 100

Reservation total bandwidth (%)

M Performance @ Schedutii ®GRUB-PA

Total energy consumption (ml) Percentage of deadline misses (%)

100

GRUB-PA: open issue it

80000 r
v“ﬁ--. 40
50000 .yﬂw g—
~ 20
40000 T T T T | 0 -

i} 20 40 80 80 100 10 20 30 50 70 90 100
Reservation total bandwidth (%) Reservation total bandwidth (36)

3

------ Performance Schedutll s GRUEB-PA m Performance m Schedutd m GRUB-PA

e Higher amount of deadline misses than schedutil for short periods on

platforms with too long frequency switch
o E.g. period 10 msec on Odroid XU4 (3.5 msec for a frequency switch)

e It can be mitigated by:
o Ignoring rate_limit for urgent requests of frequency increase (by SCHED_ DEADLINE)
o Buffering an urgent request arriving when kthread is in progress

e |t could be eliminated by using this bw rather than running bw
o Q. Is aknob in sys/ a viable solution ?

Hierarchical/group scheduling

Hierarchical/group scheduling

e First RFC sent on LKML on March ‘17 by Scuola Sant'’Anna’

o Groups of tasks can be scheduled within a SCHED DEADLINE reservation
m Firstlevel is EDF, second level is FIFO/RR
o Cgroup interface
o 3 patches, quite big:
1) removing the SCHED_RT-related cgroup mechanisms
2) new hierarchical throttling for SCHED _RT tasks that exploits SCHED DL
3) RT cgroups migration of a throttled rq, seeking for available bandwidth on other CPUs

e Should eventually supplant RT throttling EDF

ey
N

" https://lkml.org/lkml/2017/3/31/658 @ @ @

Hierarchical/group scheduling

e Usage:

mkdir /sys/fs/cgroup/cpu/rtl

echo 100000 > /sys/fs/cgroup/cpu/rtl/cpu.rt period us
echo 10000 > /sys/fs/cgroup/cpu/rtl/cpu.rt runtime us
echo $tidl > /sys/fs/cgroup/cpu/rtl/tasks

echo $tid2 > /sys/fs/cgroup/cpu/rtl/tasks

chrt -r -p $rtpriol $tidl

chrt -r -p $rtprio2 $tid2

e Behavior:

o A CPU-hog task with runtime=10ms and period(=deadline)=100ms runs for 10ms on each
CPU before being throttled

e Unclear how to proceed
o Q. Do we want a different APl/behavior ?
Or do we first want to focus on other (more urgent) features for SCHED DEADLINE ?

Semi-partitioned scheduling

The semi-partitioned scheduler

There are some cases in which a feasible task set is not scheduled by neither
global or partitioned schedulers. For instance:

“ ll,
“

\\\II\III
1 12 13 14 15 16 17 18

IE
J | | »

I
9 10 1 12 13 14 15 16 17 18

What does the academy have to say about it?

e B. Brandenburg and M. Gul, “Global Scheduling Not Required: Simple,
Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned

Reservations” shows that:

o ‘“usually = 99% schedulable utilization — can be achieved with simple, well-known and
well-understood, low-overhead techniques (+ a few tweaks).”
o This work, however, is not applicable for Linux because the workload is static

e D. Casini, A. Biondi, G. Buttazzo, “Semi-Partitioned Scheduling of Dynamic
Real-Time Workload: A Practical Approach Based on Analysis-Driven Load

Balancing.”
o This paper relaxes the first, to be able to deal with dynamic workload.

How good

AVG Accepted Load (%)

AVG Accepted Load (%)

100

90

80

70

60

50

100

90

80

70

60

50

ELRCERREY C=D-LB+EXT

88.45624 [esBN:]

 57.26535 A2
LBty P-EDF-WF

ELRbEEY G-EDF

P—EDFVBF\\.*,_’—'

0.1 0.2 0.3 0.4 m 0.5 0.6

U_AVG

YAt P ol C=D-LB+EXT —

P-EDF-BF —*
AZEEFPEL P-EDF-FF
61.69699 [M=l

0.1 0.2 03 0.4 05 m 0.7

U_AVG

Is this online semi-partitioned scheduler?

—e— GEDF
—e— P-EDF-BF
—e— P-EDF-FF
—e— P-EDF-WF
—e— C=D-B
—e— C=D-LB+EXT

—e— G-EDF

—e— P.EDF-BF
—e— P-EDF-FF
—e— P-EDF-WF
—e— C=D-LB
—e— C=D-LB+EXT

How does semi-partitioned place tasks?

[R E R B
1 12 13 14 15 16 17 18

l

m l R

7 8 9 10 11 12 13 14 15 16 17 18

Pin as much task as possible

|

[e O) EY N B Bt
0o 1 2 3 4 5 6 7 8 9 10 N 12 13 14 15 16 17 18
] J’ R l’ >
0 1 2 3 4 5 6 7 8 9 10 N 12 13 14 15 16 17 18

When it is not possible to pin, it splits a task.

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18

|
1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18

12

13

14

15

16

17

18

12

13

14

15

16

17

18

Semi-partitioned scheduler development

e |t changes how the deadline scheduler deals with multi-processor.
o ltis not a new scheduler, but an improvement in the Deadline scheduler

e \When a task switches to the DL class...

o The heuristics select where to put the task, and how to split it, if needed.
o “Scheduling reservations” are assigned to the DL entity.

m ltis like if a task could have multiple DL entities.

m Each reservation is mapped to a single CPU.

m The scheduler schedules the reservations - not the entity.

e Forexample....

o 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18

Semi-partitioned scheduler status

e Benefits:
o Allthe RT problems are reduced to single-core!
o The heuristics run only when setting attr/affinity/hotplug - less runtime overhead
For instance:
m there is no need to pull tasks, just push!
m Migrations are bounded to M, for the system!
o Tasks are mostly pinned to a single CPU!
o Affinities come for FREE! YAY!

e Status of the scheduler:

o We are seeing the theoretical results in the reality!

o But, it stills a “WiP”, we are working in a paper about it!
e Points to be discussed:

o The -real - admission control must to run in the kernel
o The design of the scheduler considers implicit deadline - likewise the current... so.

Other features...

Misc

e Reclaiming by demotion
o Requested by Android
o Patch available on top of group scheduling
m At the end of the budget, the task is demoted rather than migrated
o Q. Do we want a patch independent from group scheduling (i.e. for single tasks) ?
Or has it been superseded by GRUB ?

e Throttled signaling
o User-level signal to inform the task about throttling
o Patch available, easily portable on latest kernels
o Q. Do we want/need it ?

Misc (2)

e (Single CPU) affinity
o Currently implemented through semi-partitioned scheduling
o Need to figure out the implications on admission control
o Q. Do we want a patch independent from semi-partitioned scheduling ?

e Unprivileged usage
o Executing SCHED DEADLINE tasks w/out root privileges

BWI/Proxy execution

e First prototype of BWI implemented by Juri on an outdated kernel
o Evidence then rebased on a newer kernel but the activity has been temporarily stopped

e \We've heard that Peter started working on this

o Q. Do you have some code to share with us ?
o The group in Pisa is willing to collaborate on development/testing

Conclusions

e Schedutil integration almost ready for mainline

o Quite good results
o Just need to figure out how to deal with short periods (using this_bw is a viable option ?)

e The group in Pisa (Sant’/Anna, Evidence) is willing to collaborate on BWI

We need a list of priorities for focusing on
the most urgent features

