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Outline

e Already mainline:
o Bandwidth reclaiming (GRUB)

e On-going development:
o  Schedutil integration (GRUB-PA)
o Hierarchical/group scheduling
o Semi-partitioned scheduling

e Under discussion:
Reclaiming by demotion
Throttled signaling
(Single CPU) affinity
Unprivileged usage
Proxy execution/M-BWI

o O O O O



Bandwidth reclaiming (GRUB)



Bandwidth reclaiming

e PROBLEM

o tasks’ bandwidth is fixed (can only be changed with sched_setattr())
o what if tasks occasionally need more bandwidth?
o e.g., occasional workload fluctuations (network traffic, rendering of particularly heavy frame, etc.)

e SOLUTION

o Bandwidth reclaiming: allow tasks to consume more than allocated
o up to a certain maximum fraction of CPU time
o if this doesn’t break others’ guarantees



GRUB

Greedy Reclamation of Unused Bandwidth (GRUB'?)

Replaces Constant Bandwidth Server (CBS)

Developed by: Scuola Sant’Anna, Evidence Srl, ARM Ltd

Mainline since v4.13

Pretty good documentation: Documentation/scheduler/sched-deadline.txt

'G. Lipari, S. Baruah, Greedy reclamation of unused bandwidth in constant-bandwidth servers, 12th IEEE Euromicro Conference on Real-Time Systems, 2000.
2 L. Abeni, J. Lelli, C. Scordino, L. Palopoli, Greedy CPU reclaiming for SCHED DEADLINE, Real-Time Linux Workshop (RTLWS), Dusseldorf, Germany, 2014.
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GRUB reclaiming
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GRUB reclaiming
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GRUB reclaiming
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Task utilization

GRUB reclaiming
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GRUB exp. results’

" Experimental results from J. Lelli, SCHED_DEADLINE: It's Alive!, ELC 2017.
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GRUB exp. results’
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GRUB exp. results’
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GRUB exp. results’
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Schedutil integration (GRUB-PA)



Schedutil integration! (GRUB-PA)

e Currently, schedutil runs SCHED DEADLINE tasks at maximum CPU frequency

e Key idea: extend schedutil to SCHED DEADLINE tasks

o  GRUB-PAZ: use the bandwidth reclaimed by GRUB to lower the CPU frequency
o How: just set the CPU frequency equal to the current bandwidth
o Reservation’s runtime scaled according to frequency and CPU max capacity

e Design choices (discussed at OSPM):
o Use running bw for frequency scaling rather than this bw (more aggressive)

o Use current CPU frequency for accounting (even if changed by other scheduling classes)
o Set kthread to SCHED_DEADLINE with SCHED_FLAG_SPECIAL

e Latest RFC sent to LKML on July 5th®

" Work partially supported by ARM and the HERCULES Project, funded by European Union's H2020 program under grant agreement No. 688860.
2 C. Scordino, G. Lipari, A Resource Reservation Algorithm for Power-Aware Scheduling of Periodic and Aperiodic Real-Time Tasks, IEEE Transactions on Computers, 2006.
3 https://lkml.org/lkml/2017/7/5/139



GRUB-PA vs tip on a 4-core imx6 (Cortex-A9)
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e Higher amount of deadline misses than schedutil for short periods on

platforms with too long frequency switch
o E.g. period 10 msec on Odroid XU4 (3.5 msec for a frequency switch)

e It can be mitigated by:
o Ignoring rate_limit for urgent requests of frequency increase (by SCHED_ DEADLINE)
o Buffering an urgent request arriving when kthread is in progress

e |t could be eliminated by using this bw rather than running bw
o Q. Is aknob in sys/ a viable solution ?



Hierarchical/group scheduling



Hierarchical/group scheduling

e First RFC sent on LKML on March ‘17 by Scuola Sant'’Anna’

o  Groups of tasks can be scheduled within a SCHED DEADLINE reservation
m Firstlevel is EDF, second level is FIFO/RR
o Cgroup interface
o 3 patches, quite big:
1) removing the SCHED_RT-related cgroup mechanisms
2) new hierarchical throttling for SCHED _RT tasks that exploits SCHED DL
3) RT cgroups migration of a throttled rq, seeking for available bandwidth on other CPUs

e Should eventually supplant RT throttling EDF

ey
N

" https://lkml.org/lkml/2017/3/31/658 @ @ @



Hierarchical/group scheduling

e Usage:

mkdir /sys/fs/cgroup/cpu/rtl

echo 100000 > /sys/fs/cgroup/cpu/rtl/cpu.rt period us
echo 10000 > /sys/fs/cgroup/cpu/rtl/cpu.rt runtime us
echo $tidl > /sys/fs/cgroup/cpu/rtl/tasks

echo $tid2 > /sys/fs/cgroup/cpu/rtl/tasks

chrt -r -p $rtpriol $tidl

chrt -r -p $rtprio2 $tid2

e Behavior:

o A CPU-hog task with runtime=10ms and period(=deadline)=100ms runs for 10ms on each
CPU before being throttled

e Unclear how to proceed
o Q. Do we want a different APl/behavior ?
Or do we first want to focus on other (more urgent) features for SCHED DEADLINE ?



Semi-partitioned scheduling



The semi-partitioned scheduler

There are some cases in which a feasible task set is not scheduled by neither
global or partitioned schedulers. For instance:
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What does the academy have to say about it?

e B. Brandenburg and M. Gul, “Global Scheduling Not Required: Simple,
Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned

Reservations” shows that:

o ‘“usually = 99% schedulable utilization — can be achieved with simple, well-known and
well-understood, low-overhead techniques (+ a few tweaks).”
o  This work, however, is not applicable for Linux because the workload is static

e D. Casini, A. Biondi, G. Buttazzo, “Semi-Partitioned Scheduling of Dynamic
Real-Time Workload: A Practical Approach Based on Analysis-Driven Load

Balancing.”
o This paper relaxes the first, to be able to deal with dynamic workload.



How good
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How does semi-partitioned place tasks?
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Pin as much task as possible
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When it is not possible to pin, it splits a task.
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Semi-partitioned scheduler development

e |t changes how the deadline scheduler deals with multi-processor.
o ltis not a new scheduler, but an improvement in the Deadline scheduler

e \When a task switches to the DL class...

o The heuristics select where to put the task, and how to split it, if needed.
o “Scheduling reservations” are assigned to the DL entity.

m ltis like if a task could have multiple DL entities.

m Each reservation is mapped to a single CPU.

m The scheduler schedules the reservations - not the entity.

e Forexample....

o 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18



Semi-partitioned scheduler status

e Benefits:
o Allthe RT problems are reduced to single-core!
o The heuristics run only when setting attr/affinity/hotplug - less runtime overhead
For instance:
m there is no need to pull tasks, just push!
m Migrations are bounded to M, for the system!
o Tasks are mostly pinned to a single CPU!
o Affinities come for FREE! YAY!

e Status of the scheduler:

o We are seeing the theoretical results in the reality!

o But, it stills a “WiP”, we are working in a paper about it!
e Points to be discussed:

o The -real - admission control must to run in the kernel
o The design of the scheduler considers implicit deadline - likewise the current... so.



Other features...



Misc

e Reclaiming by demotion
o Requested by Android
o Patch available on top of group scheduling
m At the end of the budget, the task is demoted rather than migrated
o Q. Do we want a patch independent from group scheduling (i.e. for single tasks) ?
Or has it been superseded by GRUB ?

e Throttled signaling
o User-level signal to inform the task about throttling
o Patch available, easily portable on latest kernels
o Q. Do we want/need it ?



Misc (2)

e (Single CPU) affinity
o  Currently implemented through semi-partitioned scheduling
o Need to figure out the implications on admission control
o Q. Do we want a patch independent from semi-partitioned scheduling ?

e Unprivileged usage
o Executing SCHED DEADLINE tasks w/out root privileges



BWI/Proxy execution

e First prototype of BWI implemented by Juri on an outdated kernel
o Evidence then rebased on a newer kernel but the activity has been temporarily stopped

e \We've heard that Peter started working on this

o Q. Do you have some code to share with us ?
o The group in Pisa is willing to collaborate on development/testing



Conclusions

e Schedutil integration almost ready for mainline

o Quite good results
o Just need to figure out how to deal with short periods (using this_bw is a viable option ?)

e The group in Pisa (Sant’/Anna, Evidence) is willing to collaborate on BWI

We need a list of priorities for focusing on
the most urgent features




