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Outline
● Already mainline:

○ Bandwidth reclaiming (GRUB)

● On-going development:
○ Schedutil integration (GRUB-PA)
○ Hierarchical/group scheduling 
○ Semi-partitioned scheduling

● Under discussion:
○ Reclaiming by demotion
○ Throttled signaling
○ (Single CPU) affinity
○ Unprivileged usage 
○ Proxy execution/M-BWI 



Bandwidth reclaiming (GRUB)



Bandwidth reclaiming
● PROBLEM

○ tasks’ bandwidth is fixed (can only be changed with sched_setattr())
○ what if tasks occasionally need more bandwidth?
○ e.g., occasional workload fluctuations (network traffic, rendering of particularly heavy frame, etc.)

● SOLUTION
○ Bandwidth reclaiming: allow tasks to consume more than allocated
○ up to a certain maximum fraction of CPU time
○ if this doesn’t break others’ guarantees



GRUB
● Greedy Reclamation of Unused Bandwidth (GRUB1,2)
● Replaces Constant Bandwidth Server (CBS)
● Developed by: Scuola Sant’Anna, Evidence Srl, ARM Ltd
● Mainline since v4.13
● Pretty good documentation: Documentation/scheduler/sched-deadline.txt

1 G. Lipari, S. Baruah, Greedy reclamation of unused bandwidth in constant-bandwidth servers, 12th IEEE Euromicro Conference on Real-Time Systems, 2000.
2 L. Abeni, J. Lelli, C. Scordino, L. Palopoli, Greedy CPU reclaiming for SCHED_DEADLINE,  Real-Time Linux Workshop (RTLWS), Dusseldorf, Germany, 2014.
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GRUB exp. results1
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Response time (ms) T2’s reservation period

● Task1 (6ms, 20ms) constant 
execution time of 5ms

● Task2 (45ms, 260ms) 
experiences occasional variances 
(35ms-52ms)

1 Experimental results from J. Lelli, SCHED_DEADLINE: It’s Alive!, ELC 2017.
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GRUB:
T2 always completes before
reservation period (using
bandwidth left by T1)



Schedutil integration (GRUB-PA)



Schedutil integration1 (GRUB-PA)
● Currently, schedutil runs SCHED_DEADLINE tasks at maximum CPU frequency

● Key idea: extend schedutil to SCHED_DEADLINE tasks 
○ GRUB-PA2: use the bandwidth reclaimed by GRUB to lower the CPU frequency
○ How: just set the CPU frequency equal to the current bandwidth
○ Reservation’s runtime scaled according to frequency and CPU max capacity

● Design choices (discussed at OSPM):
○ Use running_bw for frequency scaling rather than this_bw (more aggressive) 
○ Use current CPU frequency for accounting (even if changed by other scheduling classes)
○ Set kthread to SCHED_DEADLINE with SCHED_FLAG_SPECIAL

● Latest RFC sent to LKML on July 5th3

1 Work partially supported by ARM and the HERCULES Project, funded by European Union's H2020 program under grant agreement No. 688860.
2 C. Scordino, G. Lipari, A Resource Reservation Algorithm for Power-Aware Scheduling of Periodic and Aperiodic Real-Time Tasks, IEEE Transactions on Computers, 2006.
3 https://lkml.org/lkml/2017/7/5/139



GRUB-PA vs tip on a 4-core imx6 (Cortex-A9)
Reservation’s runtime:

Reservation’s period:
Task’s runtime:

Task’s period:
Number of tasks:

10 - 100 msec
100 msec

90% of reservation’s runtime
100 msec

1 task

10 - 100 msec
100 msec

100% of reservation’s runtime
100 msec

1 task

10 - 100 msec
10 msec

90% of reservation’s runtime
10 msec

1 task

10 - 100 msec
100 msec

90% of reservation’s runtime
100 msec
4 tasks



GRUB-PA: open issue

● Higher amount of deadline misses than schedutil for short periods on 
platforms with too long frequency switch

○ E.g. period 10 msec on Odroid XU4 (3.5 msec for a frequency switch)

● It can be mitigated by:
○ Ignoring rate_limit for urgent requests of frequency increase (by SCHED_DEADLINE)
○ Buffering an urgent request arriving when kthread is in progress

● It could be eliminated by using this_bw rather than running_bw
○ Q. Is a knob in sys/ a viable solution ? 



Hierarchical/group scheduling



Hierarchical/group scheduling
● First RFC sent on LKML on March ‘17 by Scuola Sant’Anna1

○ Groups of tasks can be scheduled within a SCHED_DEADLINE reservation
■ First level is EDF, second level is FIFO/RR

○ Cgroup interface
○ 3 patches, quite big:

1) removing the SCHED_RT-related cgroup mechanisms
2) new hierarchical throttling for SCHED_RT tasks that exploits SCHED_DL
3) RT cgroups migration of a throttled rq, seeking for available bandwidth on other CPUs

● Should eventually supplant RT throttling

1 https://lkml.org/lkml/2017/3/31/658



Hierarchical/group scheduling
● Usage:

● Behavior: 
○ A CPU-hog task with runtime=10ms and period(=deadline)=100ms runs for 10ms on each 

CPU before being throttled

● Unclear how to proceed
○ Q. Do we want a different API/behavior ?

     Or do we first want to focus on other (more urgent) features for SCHED_DEADLINE ?

mkdir /sys/fs/cgroup/cpu/rt1
echo 100000 > /sys/fs/cgroup/cpu/rt1/cpu.rt_period_us
echo 10000 > /sys/fs/cgroup/cpu/rt1/cpu.rt_runtime_us
echo $tid1 > /sys/fs/cgroup/cpu/rt1/tasks
echo $tid2 > /sys/fs/cgroup/cpu/rt1/tasks
chrt -r -p $rtprio1 $tid1
chrt -r -p $rtprio2 $tid2



Semi-partitioned scheduling



The semi-partitioned scheduler
There are some cases in which a feasible task set is not scheduled by neither 
global or partitioned schedulers. For instance:



What does the academy have to say about it?
● B. Brandenburg and M. Gül, “Global Scheduling Not Required: Simple, 

Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned 
Reservations” shows that:

○ “usually ≥ 99% schedulable utilization — can be achieved with simple, well-known and 
well-understood, low-overhead techniques (+ a few tweaks).”

○ This work, however, is not applicable for Linux because the workload is static

● D. Casini, A. Biondi, G. Buttazzo, “Semi-Partitioned Scheduling of Dynamic 
Real-Time Workload: A Practical Approach Based on Analysis-Driven Load 
Balancing.”

○ This paper relaxes the first, to be able to deal with dynamic workload.



How good is this online semi-partitioned scheduler?



How does semi-partitioned place tasks?



Pin as much task as possible



When it is not possible to pin, it splits a task.



Voilà!



Semi-partitioned scheduler development
● It changes how the deadline scheduler deals with multi-processor.

○ It is not a new scheduler, but an improvement in the Deadline scheduler

● When a task switches to the DL class…
○ The heuristics select where to put the task, and how to split it, if needed.
○ “Scheduling reservations” are assigned to the DL entity.

■ It is like if a task could have multiple DL entities.
■ Each reservation is mapped to a single CPU.
■ The scheduler schedules the reservations - not the entity.

● For example….



Semi-partitioned scheduler status

● Benefits:
○ All the RT problems are reduced to single-core!
○ The heuristics run only when setting attr/affinity/hotplug - less runtime overhead

For instance:
■ there is no need to pull tasks, just push!
■ Migrations are bounded to M, for the system!

○ Tasks are mostly pinned to a single CPU!
○ Affinities come for FREE! YAY! 

● Status of the scheduler:
○ We are seeing the theoretical results in the reality!
○ But, it stills a “WiP”, we are working in a paper about it!

● Points to be discussed:
○ The - real - admission control must to run in the kernel
○ The design of the scheduler considers implicit deadline - likewise the current… so.



Other features...



Misc
● Reclaiming by demotion

○ Requested by Android
○ Patch available on top of group scheduling

■ At the end of the budget, the task is demoted rather than migrated
○ Q. Do we want a patch independent from group scheduling (i.e. for single tasks) ?

     Or has it been superseded by GRUB ?

● Throttled signaling
○ User-level signal to inform the task about throttling
○ Patch available, easily portable on latest kernels
○ Q. Do we want/need it ?



Misc (2)
● (Single CPU) affinity

○ Currently implemented through semi-partitioned scheduling
○ Need to figure out the implications on admission control
○ Q. Do we want a patch independent from semi-partitioned scheduling ?

● Unprivileged usage
○ Executing SCHED_DEADLINE tasks w/out root privileges



BWI/Proxy execution
● First prototype of BWI implemented by Juri on an outdated kernel

○ Evidence then rebased on a newer kernel but the activity has been temporarily stopped

● We’ve heard that Peter started working on this
○ Q. Do you have some code to share with us ?
○ The group in Pisa is willing to collaborate on development/testing



Conclusions
● Schedutil integration almost ready for mainline

○ Quite good results
○ Just need to figure out how to deal with short periods (using this_bw is a viable option ?)

● The group in Pisa (Sant’Anna, Evidence) is willing to collaborate on BWI

We need a list of priorities for focusing on
the most urgent features


