Rt-tests — Status report

* Quick overview of the tests Iin the suite
* Discussion of recent changes and new features
 |deas for the future

» Discussion / Open the floor to a wishlist for the
future.



t-tests

» Suite of tests, originally from Thomas Gleixner
— cyclictest: high resolution timer test
- signaltest: signal roundtrip test

« Small number of “core” developers, fairly stable

software suite. Surprising number of people
who contribute one or two patches and

disappear
 Development tends to occur In spurts.



t-tests

» Tests from Carsten Emde
- pmgtest: POSIX message queue test
- svsematest: SYSV semaphore latency tests
- sigwalittest: sigwait() latency test
- ptsematest. POSIX threads mutex latency test
- sendme: send a signal from a driver to userspace



t-tests

* From Clark Williams
— pi_stress: priority inheritance stress test

- hwlatdetect: hardware latency detect
* Front end to Jon Master's kernel hardware latency detector

» Clark currently working to update hwlatdetect to use either
old version of module or Steve's rewrite / ftrace-
hwlatdetector

* From John Kacur
— pip_stress: priority inheritance with processes



t-tests

e From Steven Rostedt
- rt-migrate-test:

- SCHED_DEADLINE

e deadline test:
e cyclicdeadline



rt-tests - rteval

» Rteval: originally from Clark Williams and David
Sommerseth

- Tests the suitablility of a system for realtime, using
cyclictest and running various loads such as
hackbench in order to stress test the system.



Rt-tests Social Engineering (being
good open source citizens)

e Moved rt-tests out of our home directories on
Kernel.org into pub/scm/utils/rt-tests

 Removed most distribution specific code
outside of rt-tests

* Posting all changes, even small ones.



rt-tests — New Features

Building with -DHAVE_PARSE CPUSTRING_ALL
- To use numa_parse_cpustring_all() used in isolating cpus. (no autotools!)

Support added for Android (Bionic) by Henrik Austad.
- Android lacks certain features such as pthread_barriers, pthread_setaffinity
— Support for a subset of tests

Many fixes to the build system, such as generating .0, .a and .d files
In a blddir, etc (John)

cyclictest —tracemark from Luis Capitulino
- Bypass cyclictest tracing and allow it to be done by external programs, in
particular tracecmd

» Cyclictest must still do a minimum amount of set-up such as writing to the
trace_marker file



rt-tests — New Features

* --spike=trigger (feature to record spikes from John Kacur)

- Any time a spike > trigger occurs we record the data. (Thread and
time stamp

- --spike-nodes=num_of nodes, is the amount of data we can
record, default is 1024

 Change in hwlatdetect to allow kernel module to be a built-in
(Clark Williams)

 cyclictest: SMI count/detection via MSR/SMI counter (Daniel
Bristot de Oliveira)

- --smi Enable SMI count/detection on processors with SMI count
support



rt-tests 1.0 — yay!

After a lot of necessary clean-up, all that
niggling stuff like spelling fixes, complete
manpages, etc

stable/v1.0 released May 2016
Maintenance branch called stable/devel/v1.0.1

Unstable version originally called v2.0,
renamed to unstable/devel/ivl.1.1

- Still struggling with a good way to number this.



rt-tests 1.0

* Maintained stable version, for people who just
need the tests to work, such as OSADL, and
rteval (Red Hat), and many unknown
developers.

» Unstable version for people who want to get
creative with the next version of rt-tests



rt-tests — Future ideas

Version of cyclictest that runs on small embedded systems

More modular code, better code sharing throughout the tests.

Removal of old code to handle ancient kernels and software
environments.

Rework / rewrite and simplification of options in cyclictest

Rip out tracing and use external tracing software, in particular
trace-cmd (part way there)

Ability to query rteval and cyclictest during a long run

Simple network latency test?
« Always open to new useful tests



rt-tests — Wish List

 |ldeas, wish lists, brainstorming, the floor is
yours!



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

