- redhat

Pthreads condvars: POSIX
compliance and the Pl gap

Torvald Riegel
Principal Software Engineer
2016/10/11

Agenda

- Part 1: New glibc condition variable
POSIX requirements that required a new algorithm
How blocking with futexes makes this complicated

Brief overview of the new algorithm

- Part 2 by Darren: How Pl makes this even more complicated

Q. redhat

Condition variable

Wait until a condition holds:

pthread_mutex_lock(m);

while (Icondition) // Spurious condvar wake-ups are allowed
pthread_cond_wait(cond, m);

pthread_mutex_unlock(m);

Satisfy a condition and signal that it (may have) changed:

pthread_mutex_lock(m); // Optional
condition = true;
pthread_cond_signal(cond);
pthread_mutex_unlock(m); // Optional

Q. redhat

Condvar is an order of events, not
just a counter

- POSIX, C++14: signals must wake one of the waiters that started to
wait before the signal and have not been woken

Program can observe / construct ordering because cond_wait must release
mutex atomically wrt start of waiting

Condvar must adhere to any ordering the program may have observed

- Condvar synchronization must model an order of waiters/signalers

For each signal, there is a set of eligible waiters allowed to consume the
signal

Former (/ still current) algorithm did not prevent non-eligible waiters to
steal signals from eligible waiters = new condvar algorithm required

Wi w2

S~

W3

Q. redhat

If we only spin-wait, a simple
sequence is enough

- Eligibility for wake-up determined through sequence of waiters (wseq,
a simple shared counter)

- Waiters basically take 3 steps:
1) Acquire position in wseqg: Become eligible for subsequent signals
2) Release mutex
3) Spin-wait until as many signals sent as our position in wseq
- Signalers (assume program signals while having acquired the mutex):
If number of signals sent (ssent) >= wseq, nothing to do
Otherwise, increment ssent

« Results in FIFO condvar wake-up

- Timeouts, cancellation: Waiters send artificial signals to prevent lost
wake-ups

Pretend they just consumed such an artifical signal immediately

Q. redhat

1°t attempt at using futexes

- Instead of spin-waiting, call futex_wait eventually (w/ ssent as futex
word)

- Problem: Futex wake-up order (step 3 on previous slide) can be
different from wseq order (step 1)

Waiters can only futex_wait after releasing the mutex

Futexes provide no wake-up ordering guarantees (non-Pl case) nor means
to request a certain order that relates to the wseq order we chose

Waking all threads blocked in futex_wait is bad for performance

- Workaround: Eligibility can also be claimed if a waiter's futex_wait
happens before a signal's futex_wake

Waiters wake up if ssent is larger than their wseq position

Waiters also wake up if futex_wake returns O

« Does this work?

Q. redhat

1°* attempt bug 1:

-

(wseg-ssent) < #blocked waiters

Scenario: Program can count how many waiters are still blocked, and
only send that many signals

If 2 waiters wake because of one cond_signal call (1 through observing
ssent, 1 through futex_wait), then ssent is not incremented by 2 — lost
wake-ups

Can waiters increment ssent if futex_wait returns 0?

cond_signal's ssent>=wseq check will hit early, so might run one
futex_wake less — lost wake-ups

We might be able to count these events and find a work-around

Any workaround will probably result in spurious condvar wake-ups
whenever wseq order does not match futex wake-up order

Q. redhat

1°* attempt bug 2: Can't distinguish
spurious futex wake-ups

- But... the kernel doesn't wake spuriously?!

POSIX requires that mutexes can be destroyed as soon as no thread is
blocked anymore on the mutex (similar for condvars)

General futex design: Userspace fastpaths and futex ops are not atomic
Spurious wake-ups in practice because of this and memory reuse:
1) Thread 1 releases mutex in userspace, gets suspended

2) Thread 2 acquires mutex in userspace, destroys it, reuses memory for
another futex

3) Thread 1 resumes, calls futex_wake, other futex is woken spuriously

- Condvar can't distinguish between spurious and non-spurious wakeups

Spurious wake-ups don't increment ssent - We're back to bug 1, but worse

Q. redhat

2" attempt: Maintain groups of
eligible and non-eligible waiters

New waiters start as non-eligible (group G2)

Eligible group (G1) contains only eligible waiters

Each signal wakes some thread in G1: All eligible, a counter is sufficient

When G1 is completely signaled, G2 becomes new G1

ot wa

Q. redhat

G1/G2 are roles mapped to 2 group
slots in pthread _cond _t

- Condvar keeps track of which slot has which role
There always is a G2 for waiters to enter
wseq is still maintained, so waiters can detect aliasing of groups
- Reusing G1 as G2 requires quiescence to avoid ABA in futex_wait
Only need to wait for completion of futex_wait calls
- Incoming signal switches groups if G1 fully signaled
Quiesce G1 and make it the new G2
Make G2 the new G1 and add a signal to it
« G2 to G1switchis simple

No change for existing G2 threads, no need to switch futexes

Q. redhat

Priority Inheritance

Darren Hart
Principal Engineer / Intel Open Source Technology Center
2016/10/11

- redhat

Unbounded Priority Inversion

High Priority Process
Medium Priority Process
Low Priority Process

Schedule time ——
Q. redhat

Priority Inheritance Goals

1. Guarantee wakeup of highest priority eligible waiter
2. Avoid the thundering herd

(h)
Condvar Task] Mutex
Ji-
A lock()
. wake
v Running in userspace
v Suspended in kernel
o""--'-‘
\ Tasic ! Task
. L] as L} as >
waiters > e ' - ¢ Wwaiters
N
,
- . Fl
]] "
! Task :'requeue Task
[} B (] C
]] ,
L e et
¥l
----- ¥
- . r
\ I [
! Task 1 |
[] &]
L] L]
. L}

)
Mutex
ock() >
)
Condvar Task = lock() i
A lock() i
fwake_all
v Running in userspace
ay j Suspended in kernel e
i’ Task K
; ' Tas '
waiters >
L]]
. "’
FTTT X
v Task
L}]
] B]
o
' y
! Task !
(] C]
. .
-—-—---
J

Q. redhat

Implementation Restrictions

rt_mutex cannot be in a state
with waiters and no owner

Pl futexes impose value
policy on the futex word
(stores the TID and
WAITERS), so cannot encode
sequence information

(N\)) E—
Condvar Task Mutex acquired Mutex
A before returning
to userspace.
. wake
Running in userspace
E Suspended in kernel R
.
: proxy lock
- magic
:
1
e acquire
I Tk v lock N
; - as - Tas q
waiters — A : B ¢ Wwaiters
e
. ¥
Task vrequeue Task
B - C
-
~— Task |
E
J

Q. redhat

Considerations

Concerned with Unbounded Priority Inversion with respect to the
target mutex and locking implementation (not forward progress
toward satisfying the condition)

Priority Inheritance applies to SCHED_FIFO, SCHED_RR - but not
SCHED_DEADLINE

What are we interesting in solving?

Q. redhat

Discussion

- redhat

Pl problem: Group quiescence

When switching from G1 to G2, need to avoid futex_wait ABA

Need to quiesce group 1: Threads that ran futex_wake need to confirm that
they have been woken

Need to boost prio of those threads, but they have not acquired a lock

No helper-futex-per-waiter possible because we need to support
process-shared condvars

Q. redhat

Potential solutions for the Pl gap

- What do you really want? Is it really a condvar?

- Make the base condvar algorithm simpler

Other futex_wait conditions than simple inequality (eg, make wake-up
conditional on futex word value and some relation)?

Let callers request a certain wake-up order?

- Solve Pl vs. quiescence

64b futex operations so we can version futex words and make ABA
impossible in practice?

Pl mechanism to boost all threads blocked on or having acquired a lock
without actually acquiring the lock?

Requeueing threads is not sufficient, we need confirmation that they
are not going to run a pending futex_wait call next to avoid the ABA
issue

FUTEX_WAIT_REQUEUE_PI is just requeueing, but not preventing
pending old futex_wait calls

Q. redhat

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

