
Pthreads condvars: POSIX
compliance and the PI gap

Torvald Riegel
Principal Software Engineer
2016/10/11

2

Agenda

• Part 1: New glibc condition variable
• POSIX requirements that required a new algorithm

• How blocking with futexes makes this complicated

• Brief overview of the new algorithm

• Part 2 by Darren: How PI makes this even more complicated

Condition variable

• Wait until a condition holds:

pthread_mutex_lock(m);
while (!condition) // Spurious condvar wake-ups are allowed
 pthread_cond_wait(cond, m);
pthread_mutex_unlock(m);

• Satisfy a condition and signal that it (may have) changed:

pthread_mutex_lock(m); // Optional
condition = true;
pthread_cond_signal(cond);
pthread_mutex_unlock(m); // Optional

Condvar is an order of events, not
just a counter

• POSIX, C++14: signals must wake one of the waiters that started to
wait before the signal and have not been woken

• Program can observe / construct ordering because cond_wait must release
mutex atomically wrt start of waiting

• Condvar must adhere to any ordering the program may have observed

• Condvar synchronization must model an order of waiters/signalers
• For each signal, there is a set of eligible waiters allowed to consume the

signal

• Former (/ still current) algorithm did not prevent non-eligible waiters to
steal signals from eligible waiters new condvar algorithm required→

W1 W2 W3S1 S2

If we only spin-wait, a simple
sequence is enough

• Eligibility for wake-up determined through sequence of waiters (wseq,
a simple shared counter)

• Waiters basically take 3 steps:
1) Acquire position in wseq: Become eligible for subsequent signals

2) Release mutex

3) Spin-wait until as many signals sent as our position in wseq

• Signalers (assume program signals while having acquired the mutex):
• If number of signals sent (ssent) >= wseq, nothing to do

• Otherwise, increment ssent

• Results in FIFO condvar wake-up

• Timeouts, cancellation: Waiters send artificial signals to prevent lost
wake-ups

• Pretend they just consumed such an artifical signal immediately

1st attempt at using futexes

• Instead of spin-waiting, call futex_wait eventually (w/ ssent as futex
word)

• Problem: Futex wake-up order (step 3 on previous slide) can be
different from wseq order (step 1)

• Waiters can only futex_wait after releasing the mutex

• Futexes provide no wake-up ordering guarantees (non-PI case) nor means
to request a certain order that relates to the wseq order we chose

• Waking all threads blocked in futex_wait is bad for performance

• Workaround: Eligibility can also be claimed if a waiter's futex_wait
happens before a signal's futex_wake

• Waiters wake up if ssent is larger than their wseq position

• Waiters also wake up if futex_wake returns 0

• Does this work?

1st attempt bug 1:
(wseq-ssent) < #blocked waiters

• Scenario: Program can count how many waiters are still blocked, and
only send that many signals

• If 2 waiters wake because of one cond_signal call (1 through observing
ssent, 1 through futex_wait), then ssent is not incremented by 2 lost →
wake-ups

• Can waiters increment ssent if futex_wait returns 0?
• cond_signal's ssent>=wseq check will hit early, so might run one

futex_wake less lost wake-ups→

• We might be able to count these events and find a work-around

• Any workaround will probably result in spurious condvar wake-ups
whenever wseq order does not match futex wake-up order

1st attempt bug 2: Can't distinguish
spurious futex wake-ups

• But… the kernel doesn't wake spuriously?!
• POSIX requires that mutexes can be destroyed as soon as no thread is

blocked anymore on the mutex (similar for condvars)

• General futex design: Userspace fastpaths and futex ops are not atomic

• Spurious wake-ups in practice because of this and memory reuse :

1) Thread 1 releases mutex in userspace, gets suspended

2) Thread 2 acquires mutex in userspace, destroys it, reuses memory for
another futex

3) Thread 1 resumes, calls futex_wake, other futex is woken spuriously

• Condvar can't distinguish between spurious and non-spurious wakeups
• Spurious wake-ups don't increment ssent We're back to bug 1, but worse→

2nd attempt: Maintain groups of
eligible and non-eligible waiters

• New waiters start as non-eligible (group G2)

• Eligible group (G1) contains only eligible waiters
• Each signal wakes some thread in G1: All eligible, a counter is sufficient

• When G1 is completely signaled, G2 becomes new G1

W1 W2 W3S1 S2

W1 W2

W1 W2 S1

G2

G1

G1 G2

W3 S2G1 S3

G1/G2 are roles mapped to 2 group
slots in pthread_cond_t

• Condvar keeps track of which slot has which role
• There always is a G2 for waiters to enter

• wseq is still maintained, so waiters can detect aliasing of groups

• Reusing G1 as G2 requires quiescence to avoid ABA in futex_wait
• Only need to wait for completion of futex_wait calls

• Incoming signal switches groups if G1 fully signaled
• Quiesce G1 and make it the new G2

• Make G2 the new G1 and add a signal to it

• G2 to G1 switch is simple
• No change for existing G2 threads, no need to switch futexes

Priority Inheritance

Darren Hart
Principal Engineer / Intel Open Source Technology Center
2016/10/11

Unbounded Priority Inversion

Priority Inheritance Goals

1. Guarantee wakeup of highest priority eligible waiter

2. Avoid the thundering herd

Implementation Restrictions

• rt_mutex cannot be in a state
with waiters and no owner

• PI futexes impose value
policy on the futex word
(stores the TID and
WAITERS), so cannot encode
sequence information

Considerations

• Concerned with Unbounded Priority Inversion with respect to the
target mutex and locking implementation (not forward progress
toward satisfying the condition)

• Priority Inheritance applies to SCHED_FIFO, SCHED_RR – but not
SCHED_DEADLINE

• What are we interesting in solving?

Discussion

PI problem: Group quiescence

• When switching from G1 to G2, need to avoid futex_wait ABA
• Need to quiesce group 1: Threads that ran futex_wake need to confirm that

they have been woken

• Need to boost prio of those threads, but they have not acquired a lock

• No helper-futex-per-waiter possible because we need to support
process-shared condvars

Potential solutions for the PI gap

• What do you really want? Is it really a condvar?

• Make the base condvar algorithm simpler
• Other futex_wait conditions than simple inequality (eg, make wake-up

conditional on futex word value and some relation)?

• Let callers request a certain wake-up order?

• Solve PI vs. quiescence
• 64b futex operations so we can version futex words and make ABA

impossible in practice?

• PI mechanism to boost all threads blocked on or having acquired a lock
without actually acquiring the lock?

• Requeueing threads is not sufficient, we need confirmation that they
are not going to run a pending futex_wait call next to avoid the ABA
issue

• FUTEX_WAIT_REQUEUE_PI is just requeueing, but not preventing
pending old futex_wait calls

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

