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Agenda

- Part 1: New glibc condition variable
POSIX requirements that required a new algorithm
How blocking with futexes makes this complicated

Brief overview of the new algorithm

- Part 2 by Darren: How Pl makes this even more complicated
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Condition variable

Wait until a condition holds:

pthread_mutex_lock(m);

while (Icondition) // Spurious condvar wake-ups are allowed
pthread_cond_wait(cond, m);

pthread_mutex_unlock(m);

Satisfy a condition and signal that it (may have) changed:

pthread_mutex_lock(m); // Optional
condition = true;
pthread_cond_signal(cond);
pthread_mutex_unlock(m); // Optional
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Condvar is an order of events, not
just a counter

-  POSIX, C++14: signals must wake one of the waiters that started to
wait before the signal and have not been woken

Program can observe / construct ordering because cond_wait must release
mutex atomically wrt start of waiting

Condvar must adhere to any ordering the program may have observed

- Condvar synchronization must model an order of waiters/signalers

For each signal, there is a set of eligible waiters allowed to consume the
signal

Former (/ still current) algorithm did not prevent non-eligible waiters to
steal signals from eligible waiters = new condvar algorithm required
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If we only spin-wait, a simple
sequence is enough

- Eligibility for wake-up determined through sequence of waiters (wseq,
a simple shared counter)

- Waiters basically take 3 steps:
1) Acquire position in wseqg: Become eligible for subsequent signals
2) Release mutex
3) Spin-wait until as many signals sent as our position in wseq
- Signalers (assume program signals while having acquired the mutex):
If number of signals sent (ssent) >= wseq, nothing to do
Otherwise, increment ssent

« Results in FIFO condvar wake-up

- Timeouts, cancellation: Waiters send artificial signals to prevent lost
wake-ups

Pretend they just consumed such an artifical signal immediately
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1°t attempt at using futexes

- Instead of spin-waiting, call futex_wait eventually (w/ ssent as futex
word)

- Problem: Futex wake-up order (step 3 on previous slide) can be
different from wseq order (step 1)

Waiters can only futex_wait after releasing the mutex

Futexes provide no wake-up ordering guarantees (non-Pl case) nor means
to request a certain order that relates to the wseq order we chose

Waking all threads blocked in futex_wait is bad for performance

-  Workaround: Eligibility can also be claimed if a waiter's futex_wait
happens before a signal's futex_wake

Waiters wake up if ssent is larger than their wseq position

Waiters also wake up if futex_wake returns O

« Does this work?
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1°* attempt bug 1:

-

(wseg-ssent) < #blocked waiters

Scenario: Program can count how many waiters are still blocked, and
only send that many signals

If 2 waiters wake because of one cond_signal call (1 through observing
ssent, 1 through futex_wait), then ssent is not incremented by 2 — lost
wake-ups

Can waiters increment ssent if futex_wait returns 0?

cond_signal's ssent>=wseq check will hit early, so might run one
futex_wake less — lost wake-ups

We might be able to count these events and find a work-around

Any workaround will probably result in spurious condvar wake-ups
whenever wseq order does not match futex wake-up order
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1°* attempt bug 2: Can't distinguish
spurious futex wake-ups

- But... the kernel doesn't wake spuriously?!

POSIX requires that mutexes can be destroyed as soon as no thread is
blocked anymore on the mutex (similar for condvars)

General futex design: Userspace fastpaths and futex ops are not atomic
Spurious wake-ups in practice because of this and memory reuse:
1) Thread 1 releases mutex in userspace, gets suspended

2) Thread 2 acquires mutex in userspace, destroys it, reuses memory for
another futex

3) Thread 1 resumes, calls futex_wake, other futex is woken spuriously

- Condvar can't distinguish between spurious and non-spurious wakeups

Spurious wake-ups don't increment ssent - We're back to bug 1, but worse
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2" attempt: Maintain groups of
eligible and non-eligible waiters

New waiters start as non-eligible (group G2)

Eligible group (G1) contains only eligible waiters

Each signal wakes some thread in G1: All eligible, a counter is sufficient

When G1 is completely signaled, G2 becomes new G1
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G1/G2 are roles mapped to 2 group
slots in pthread _cond _t

- Condvar keeps track of which slot has which role
There always is a G2 for waiters to enter
wseq is still maintained, so waiters can detect aliasing of groups
- Reusing G1 as G2 requires quiescence to avoid ABA in futex_wait
Only need to wait for completion of futex_wait calls
- Incoming signal switches groups if G1 fully signaled
Quiesce G1 and make it the new G2
Make G2 the new G1 and add a signal to it
« G2 to G1switchis simple

No change for existing G2 threads, no need to switch futexes
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Priority Inheritance
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Unbounded Priority Inversion

High Priority Process
Medium Priority Process
Low Priority Process

Schedule time  ——
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Priority Inheritance Goals

1. Guarantee wakeup of highest priority eligible waiter
2. Avoid the thundering herd

( h )
Condvar Task ] Mutex
Ji-
A lock()
. wake
v Running in userspace
v Suspended in kernel
o""--'-‘
\ Tasic ! Task
. L] as L} as >
waiters > e ' - ¢ Wwaiters
N
,
- . Fl
] ] "
! Task :'requeue Task
[} B (] C
] ] ,
L e et
¥l
----- ¥
- . r
\ I [
! Task 1 |
[] & ]
L] L]
. L}

)
Mutex
ock() >
)
Condvar Task = lock() i
A lock() i
fwake_all
v Running in userspace
ay j Suspended in kernel e
i’ Task K
; ' Tas '
waiters >
L] ]
. "’
FTTT X
v Task
L} ]
] B ]
o
' y
! Task !
(] C ]
. .
-—-—---
J

Q. redhat



Implementation Restrictions

rt_mutex cannot be in a state
with waiters and no owner

Pl futexes impose value
policy on the futex word
(stores the TID and
WAITERS), so cannot encode
sequence information
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Considerations

Concerned with Unbounded Priority Inversion with respect to the
target mutex and locking implementation (not forward progress
toward satisfying the condition)

Priority Inheritance applies to SCHED_FIFO, SCHED_RR - but not
SCHED_DEADLINE

What are we interesting in solving?
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Discussion
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Pl problem: Group quiescence

When switching from G1 to G2, need to avoid futex_wait ABA

Need to quiesce group 1: Threads that ran futex_wake need to confirm that
they have been woken

Need to boost prio of those threads, but they have not acquired a lock

No helper-futex-per-waiter possible because we need to support
process-shared condvars
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Potential solutions for the Pl gap

-  What do you really want? Is it really a condvar?

- Make the base condvar algorithm simpler

Other futex_wait conditions than simple inequality (eg, make wake-up
conditional on futex word value and some relation)?

Let callers request a certain wake-up order?

- Solve Pl vs. quiescence

64b futex operations so we can version futex words and make ABA
impossible in practice?

Pl mechanism to boost all threads blocked on or having acquired a lock
without actually acquiring the lock?

Requeueing threads is not sufficient, we need confirmation that they
are not going to run a pending futex_wait call next to avoid the ABA
issue

FUTEX_WAIT_REQUEUE_PI is just requeueing, but not preventing
pending old futex_wait calls
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