
Real-time KVM from the ground up

LinuxCon NA 2016

Rik van Riel
Red Hat

Real-time KVM
● What is real time?
● Hardware pitfalls
● Realtime preempt Linux kernel patch set
● KVM & qemu pitfalls
● KVM configuration
● Scheduling latency performance numbers
● Conclusions

What is real time?
 Real time is about determinism, not speed
 Maximum latency matters most

● Minimum / average / maximum
 Used for workloads where missing deadlines is bad

● Telco switching (voice breaking up)
● Stock trading (financial liability?)
● Vehicle control / avionics (exploding rocket!)

 Applications may have thousands of deadlines a second
 Acceptable max response times vary

● For telco & stock cases, a few dozen microseconds
● Very large fraction of responses must happen within

that time frame (eg. 99.99%)

RHEL7.x Real-time Scheduler Latency Jitter Plot

10
Million
Sample
s

Hardware pitfalls
 Biggest problems: BIOS, BIOS, and BIOS
 System Management Mode (SMM) & Interrupt (SMI)

● Used to emulate or manage things, eg:
● USB mouse PS/2 emulation
● System management console

 SMM runs below the operating system
● SMI traps to SMM, runs firmware code

 SMIs can take milliseconds to run in extreme cases
● OS and real time applications interrupted by SMI

 Realtime may require BIOS settings changes
● Some systems not fixable
● Buy real time capable hardware

 Test with hwlatdetect & monitor SMI count MSR

Realtime preempt Linux kernel
 Normal Linux has similar latency issues as BIOS SMI
 Non-preemptible critical sections: interrupts, spinlocks, etc
 Higher priority program can only be scheduled after the

critical section is over
 Real time kernel code has existed for years

● Some of it got merged upstream
● CONFIG_PREEMPT

● Some patches in a separate tree
● CONFIG_PREEMPT_RT

 https://rt.wiki.kernel.org/
 https://osadl.org/RT/

https://rt.wiki.kernel.org/
https://osadl.org/RT/

Realtime kernel overview
 Realtime project created a LOT of kernel changes

● Too many to keep in separate patches
 Already merged upstream

● Deterministic real time scheduler
● Kernel preemption support
● Priority Inheritance mutexes
● High-resolution timer
● Preemptive Read-Copy Update
● IRQ threads
● Raw spinlock annotation
● NO_HZ_FULL mode

 Not yet upstream
● Full realtime preemption

PREEMPT_RT kernel changes
 Goal: make every part of the Linux kernel preemptible

● or very short duration
 Highest priority task gets to preempt everything else

● Lower priority tasks
● Kernel code holding spinlocks
● Interrupts

 How does it do that?

PREEMPT_RT internals
 Most spinlocks turned into priority inherited mutexes

● “spinlock” sections can be preempted
● Much higher locking overhead

 Very little code runs with raw spinlocks
 Priority inheritance

● Task A (prio 0), task B (prio 1), task C (prio 2)
● Task A holds lock, task B running
● Task C wakes up, wants lock
● Task A inherits task C's priority, until lock is released

 IRQ threads
● Each interrupt runs in a thread, schedulable

 RCU tracks tasks in grace periods, not CPUs
 Much, much more...

KVM & qemu pitfalls
 Real time is hard
 Real time virtualization is much harder

 Priority of tasks inside a VM are not visible to the host
● The host cannot identify the VCPU with the highest

priority program
 Host kernel housekeeping tasks extra expensive

● Guest exit & re-entry
● Timers, RCU, workqueues, …

 Lock holders inside a guest not visible to the host
● No priority inheritance possible

 Tasks on VCPU not always preemptible due to emulation
in qemu

Real time KVM kernel changes
 Extended RCU quiescent state in guest mode
 Add parameter to disable periodic kvmclock sync

● Applying host ntp adjustments into guest causes
latency

● Guest can run ntpd and keep its own adjustment
 Disable scheduler tick when running a SCHED_FIFO task

● Not rescheduling? Don't run the scheduler tick
 Add parameter to advance tscdeadline hrtime parameter

● Makes timer interrupt happen “early” to compensate
for virt overhead

 Various isolcpus= and workqueue enhancements
● Keep more housekeeping tasks away from RT CPUs

Priority inversion & starvation
 Host & guest separated by clean(ish) abstraction layer
 VCPU thread needs a high real time priority on the host

● Guarantee that real time app runs when it wants
 VCPU thread has same high real time host priority when

running unimportant things...
 Guest could be run with idle=poll

● VCPU uses 100% host CPU time, even when idle
 Higher priority things on the same CPU on the host are

generally unacceptable – could interfere with real time task
 Lower priority things on the same CPU on the host could

starve forever – could lead to system deadlock

KVM real time virtualization host partitioning
 Avoid host/guest starvation

● Run VCPU threads on dedicated CPUs
● No host housekeeping on those CPUs, except

ksoftirqd for IPI & VCPU IRQ delivery
 Boot host with isolcpus and nohz_full arguments
 Run KVM guest VCPUs on isolated CPUs
 Run host housekeeping tasks on other CPUs

KVM real time virtualization host partitioning
 Run VCPUs on dedicated host CPUs
 Keep everything else out of the way

● Even host kernel tasks

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

NUMA
Node 0

Core 0

Core 0

Core 2

Core 2

Core 3

Core 3

Core 1

Core 1

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

 Socket

NUMA
Node 1

Core 4

Core 4

Core 6

Core 6

Core 7

Core 7

Core 5

Core 5

SocketSocket

Housekeeping cores Real-time cores

KVM real time virtualization guest partitioning
 Partitioning the host is not enough
 Tasks on guest can do things that require emulation

● Worst case: emulation by qemu userspace on host
● Poking I/O ports
● Block I/O
● Video card access
● ...

 Emulation can take hundreds of microseconds
● Context switch to other qemu thread
● Potentially wait for qemu lock
● Guest blocked from switching to higher priority task

 Guest needs partitioning, too!

KVM real time virtualization guest partitioning
 Guest booted with isolcpus
 Real time tasks run on isolated CPUs
 Everything else runs on system CPUs

 vCPU vCPU vCPU vCPU

 vCPU vCPU vCPU vCPU

Virtual
Machine

Real-time vCPUs Housekeeping vCPUs

 vCPU vCPU vCPU vCPU

Real time KVM performance numbers
 Dedicated resources are ok

● Modern CPUs have many cores
● People often disable hyperthreading

 Scheduling latencies with cyclictest
● Real time test tool

 Measured scheduling latencies inside KVM guest
● Minimum: 5us
● Average: 6us
● Maximum: 14us

0

2

4

6

8

Cyclictest Latency

Min
Mean
99.9%
Stddev

L
a

te
n

c
y

 (
m

ic
ro

s
e

c
o

n
d

s
)

-10

40

90

140

Cyclictest Latency

Min
Mean
99.9%
Stddev
Max

L
a

te
n

c
y

 (
m

ic
ro

s
e

c
o

n
d

s
)

Remove maxes to zoom in

RHEL7.x Scheduler Latency (cyclictest)

Intel Ivy Bridge 2.4 Ghz, 128 GB mem

“Doctor, it hurts when I ...”

All kinds of system operations can cause high latencies
 CPU frequency change
 CPU hotplug
 Loading & unloading kernel modules
 Task migration between isolated and system CPUs

● TLB flush IPI may get queued behind a slow op
● Keep real time and system tasks separated

 Host clocksource change from TSC to !TSC
● Use hardware with stable TSC

 Page faults or swapping
● Run with enough memory

 Use of slow devices (eg. disk, video, or sound)
● Only use fast devices from realtime programs
● Slow devices can be used from helper programs

Cache Allocation Technology
 Single CPU can have many CPU cores, sharing L3 cache
 Cannot load lots of things from RAM in 14us

● ~60ns for a single DRAM access
● Uncached context switch + TLB loads + more could

add up to >50us
 Low latencies depend on things being in CPU cache
 Latest Intel CPUs have Cache Allocation Technology

● CPU cache “quotas”
● Per application group, cgroups interface
● Available on some Haswell CPUs

 Prevents one workload from evicting another workload
from the cache

 Helps improve the guarantee of really low latencies

Future
 Use task isolation patches developed by Chris Metcalf?
 Change KVM to have guests run continuously on such fully

isolated CPUs
 Let guests do some of their own CPU power saving

(shallow c-states most of the time) on those CPUs?
 Enhance libvirt to have emulator threads run on different

CPUs than the VCPU threads

Comparison with Jailhouse
 Jailhouse

● Partitioning hypervisor
● Typically used with assigned devices
● Requires some custom setup

 KVM
● Typically used as timeslicing hypervisor
● Can be configured closer to partitioned system

● Not perfect (yet), more kernel enhancements
● Close enough for many uses

● Can be managed through standard tools
● Libvirt, OpenStack, Ovirt, etc

● Real Time & normal hosts & guests managed with
the same tools, as part of the same cloud

Conclusions
 Real time KVM is actually possible

● Achieved largely through system partitioning
● Overcommit is not an option

 Latencies low enough for various real time applications
● 14 microseconds max latency with cyclictest

 Real time apps must avoid high latency operations
 Virtualization helps with isolation, manageability, hardware

compatibility, …
 Requires very careful configuration

● Can be automated with libvirt, openstack, etc

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 15
	Slide 16
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

