
CURRICULUM
Core	FOSS	Compliance	Version	1
Designed	for	Version	1	of	the	OpenChain	Specification

Released	under	the	Creative	Commons	CC0	1.0	Universal license.

This is not legal advice



Contents
1. What is Intellectual Property?
2. Introduction to FOSS 

Licenses
3. Introduction to FOSS 

Compliance
4. Key Software Concepts for 

FOSS Review

5. Running a FOSS Review
6. End to End Compliance 

Management (Example 
Process)

7. Avoiding Compliance Pitfalls



CHAPTER 1
What is Intellectual Property?



What is “Intellectual Property”?
• Copyright: protects original works of authorship 

• Protects expression (not the underlying idea) 
• Software, books, audiovisual materials, semiconductor masks

• Patents: useful inventions that are novel, useful, non-obvious 
• Limited monopoly to incentivize innovation

• Trade secrets: protects confidential and valuable information
• Trademarks: protects marks (word, logos, slogans, color, etc.) that identify the 

source of the product
• Consumer and brand protection; avoid consumer confusion and brand dilution

This chapter will focus on copyright and patents, the areas most relevant to 
FOSS compliance



Copyright concepts in software
• Basic rule = copyright protects creative works
• Copyright generally applies to literary works, such as books, movies, 

pictures, music, maps
• Software is protected by copyright, not the functionality (that’s protected by 

patents) but the expression (creativity in implementation details)
• The copyright owner only has control over the work that he or she created, 

not someone else’s independent creation



Copyright rights most relevant to software
• The right to reproduce the software – making copies
• The right to create "derivative works" – making modifications

• The	term	derivative	work	refers	to	a	new	work	based	upon	an	original	work	to	which	enough	
original	creative	work	has	been	added	so	that	the	new	work	represents	an	original	work	of	
authorship	rather	than	a	copy	(note	that	this	is	a	term	of	art	under	US	law)

• The right to distribute
• Distribution	is	generally	viewed	as	the	provision	of	a	copy	of	a	piece	of	software	in	binary	or	
source	code	form	to	another	entity	(an	individual	or	organization	outside	your	company	or	
organization)		

Note:	The	interpretation	of	what	constitutes	a	“derivative	work”	or	a	“distribution”	is	
subject	to	debate	in	the	FOSS	community	and	within	FOSS	legal	circles



Patent concepts in software
• Patents protect functionality - this can include a method of operation, such as 

a computer program
• Does not protect abstract ideas, laws of nature

• The patent owner has the right to stop anybody from exercising that 
functionality, regardless of independent creation 

• Other parties who want to use the technology may seek a patent license 
(which may grant rights to use, make, have made, sell, offer for sale, and 
import the technology)



Licenses
• A "license" is the way a copyright or patent holder gives permission or 

rights to someone else
• The license can be limited to:

• Types of use allowed (distribution, derivative works / to make, have made, manufacture)
• Exclusive or non-exclusive terms
• Geographical scope
• Perpetual or time limited duration

• The license can have conditions on the grants, meaning you only get the 
license if you comply with certain obligations
• E.g, provide attribution, give a reciprocal license

• May also include contractual terms regarding warranties, indemnification, 
support, upgrade, maintenance



Check Your Understanding
• What	type	of	material	does	copyright	law	protect?
• What	copyright	rights	are	most	important	for	software?
• Can	software	be	subject	to	a	patent?	
• Does	a	patent	give	rights	to	the	patent	owner?
• If	you	independently	develop	your	own	software,	is	it	possible	that	you	might	
need	a	copyright	license	from	a	third	party	for	that	software?	A	patent	license?



CHAPTER	2
Introduction	to	FOSS	Licenses



FOSS	Licenses	
• Free	and	Open	Source	Software	(FOSS)	licenses	generally	make	source	code	
available	under	terms	that	allow	for	modification	and	redistribution

• FOSS	licenses	may	have	conditions	related	to	providing	attributions,	copyright	
statement	preservation,	or	a	written	offer	to	make	the	source	code	available

• One	popular	set	of	FOSS	licenses	are	those	approved	by	the	Open	Source	Initiative	
(OSI)	based	on	their	Open	Source	Definition	(OSD).	A	complete	list	of	OSI-approved	
FOSS	licenses	is	available	at	http://www.opensource.org/licenses/



Permissive	FOSS	Licenses
• Permissive	FOSS	license	- a	term	used	often	to	describe	minimally	restrictive	FOSS	
licenses

• Example:	BSD-3-Clause
• The	BSD	license	is	an	example	of	a	permissive	 license	that	allows	unlimited	redistribution	for	
any	purpose	as	long	as	its	copyright	notices	and	the	license's	disclaimers	of	warranty	are	
maintained	

• The	license	contains	a	clause	restricting	use	of	the	names	of	contributors	for	endorsement	of	
a	derived	work	without	specific	permission

• Other	examples:	MIT,	Apache-2.0



License	Reciprocity	&	Copyleft	Licenses
• Some	licenses	require	the	distribution	of	derivative	works	(or	software	in	the	same	
file,	same	program	or	other	boundary)	under	the	same	terms	as	the	original	work
• This	is	referred	to	as	a	"copyleft",	"reciprocal",	or	"hereditary"	effect

• Example	of	license	reciprocity	from	the	GPL-2.0:
"You	must	cause	any	work	that	you	distribute	or	publish,	that	in	whole	or	in	part	
contains	or	is	derived	from	the	Program	or	any	part	thereof,	to	be	licensed...under	
the	terms	of	this	License."

• Examples:	all	versions	of	GPL,	LGPL,	AGPL,	MPL,	CDDL	



Proprietary	License
• A	proprietary	software	license	(or	commercial	license	or	EULA)	has	restrictions	on	
the	usage,	modification	or	distribution	of	the	software

• Proprietary	licenses	often	involve	payment	or	a	license	fee	
• Proprietary	licenses	are	unique	to	each	vendor	- there	are	as	many	variations	of	
proprietary	licenses	as	there	are	vendors	and	each	must	be	evaluated	individually

• FOSS	developers	often	use	the	term	"proprietary	license"	to	describe	a	commercial	
non-FOSS	license



Other	Licensing	Situations
• Freeware	- software	distributed	under	a	proprietary	license	at	no	or	very	low	cost

• The	source	code	may	or	may	not	be	available,	and	creation	of	derivative	works	is	usually	restricted
• Freeware	software	is	usually	fully	 functional	 (no	 locked	features)	and	available	for	unlimited	use	(no	locking	
on	days	of	usage)	

• Freeware	software	licenses	usually	impose	restrictions	in	relation	to	copying,	 distributing,	 and	making	
derivative	works	of	the	software,	as	well	as	restrictions	on	the	type	of	usage	(personal,	 commercial,	
academic,	etc.)

• Shareware	- proprietary	software	provided	to	users	on	a	trial	basis,	for	a	limited	
time,	free	of	charge	and	with	limited	functionalities	or	features
• The	goal	of	shareware	is	to	give	potential	buyers	the	opportunity	to	use	the	program	and	judge	its	
usefulness	before	purchasing	a	license	for	the	full	version	of	the	software	

• Most	companies	are	very	leery	of	Shareware,	because	Shareware	vendors	often	approach	
companies	for	large	license	payments	after	the	software	has	freely	propagated	within	their	
organizations.

• Freeware	and	Shareware	are	not	FOSS



Public	Domain
• The	term	public	domain	refers	to	intellectual	property	not	protected	by	law	and	
therefore	usable	by	the	public	without	requiring	a	license	

• Developers	may	include	a	public	domain	declaration with	their	software	
• E.	g.,	"All	of	the	code	and	documentation	in	this	software	has	been	dedicated	to	the	public	domain	
by	the	authors."

• The	public	domain	declaration	is	not	the	same	as	a	FOSS	license

• The	enforceability	of	these	public	domain	declarations	is	subject	to	dispute	within	
the	FOSS	community

• Often	the	public	domain	declaration	is	accompanied	by	other	terms,	such	as	
warranty	disclaimers.	In	such	cases,	the	software	may	be	viewed	as	being	under	a	
license	rather	than	being	in	the	public	domain



License	Compatibility
• License	compatibility	 is	the	process	of	ensuring	that	license	terms	do	not	conflict.	If	one	license	requires	
you	to	do	something	and	another	prohibits	doing	that,	the	licenses	 conflict	and	are	not	compatible	[if	the	
combination	of	the	two	software	modules	trigger	the	obligations	under	a	license;	for	example,GPLv2	
extends	 its	obligations	to	"derivative	works"	and	if	a	second	software	module	is	combined	with	a	GPLv2	
licensed	module	that	is	not	a	derivative	work	of	the	GPLv2	licensed	module,	the	second	software	module	
is	not	subject	to	GPLv2.		The	definition	of	"derivative	work"	is	subject	to	different	views	in	the	FOSS	
community}	

• The	Free	Software	Foundation	provides	the	following	example	to	illustrate	a	case	of	license	 compatibility:
A	license	p	is	compatible	with a	license	q	(or	is	q-compatible)	if
A	work	licensed	under	p	can	be	distributed	under	the	terms	of	q.

• Example:	GPL	compatibility
• Many	of	the	FOSS	licenses,	such	as	the	MIT	license	and	the	LGPL,	are	GPL-compatible,	meaning	that	their	source	code	can	
be	combined	with	source	code	that	is	licensed	under	the	GPL	without	conflict;	the	new	program	resulting	from	the	
combination	would	have	to	be	licensed	under	the	GPL.

• Other	FOSS	and	proprietary	software	licenses	are	not	GPL-compatible	since	they	have	conflicting	terms	and	conditions,	 but		
such	inconsistency	 is	only	important	if	these	programs	are	combined	in	a	way	which	creates	a	derivative	work	with	the	
GPLv2	software.

• Reference:	http://www.fsf.org/licensing/licenses/



Notices
Notices,	such	as	text	in	comments	in	file	headers,	often	provide	authorship	and	licensing	
information.	FOSS	licenses	may	also	require	the	placement	of	notices	in	source	code	or	
documentation	to	give	credit	to	the	author	(an	attribution)	or	to	make	it	clear	the	software	
includes	modifications.	
• Copyright	notice	- an	identifier	placed	on	copies	of	the	work	to	inform	the	world	of	
copyright	ownership.	Example:	Copyright	©	A.	Person	(2016).	

• License	notice - a	notice	that	acknowledges	the	license	terms	and	conditions	of	the	FOSS	
included	in	the	product.

• Attribution	notice	- a	notice	included	in	the	product	release	that	acknowledges	the	
identity	of	the	original	authors	of	the	FOSS	included	in	the	product.

• Modification	notice	– a	notice	that	you	have	made	modifications	to	the	source	code	of	a	
file,	such	as	adding	your	copyright	notice	to	the	top	of	the	file.	



Multi-Licensing
• Multi-licensing	refers	to	the	practice	of	distributing	software	under	two	or	more	different	
sets	of	terms	and	conditions
• E.g.,	when	software	is	“dual	licensed,”	recipients	can	choose	to	use	or	distribute	the	software	under	a	
choice	of	two	licenses

• Note:	This	should	not	be	confused	for	situations	in	which	a	licensor	imposes	more	than	
one	license,	and	you	must	comply	with	all	of	them



Check	Your	Understanding
• What	is	a	FOSS	license?
• What	are	typical	obligations	of	a	permissive	FOSS	license?
• Name	some	permissive	FOSS	licenses.
• What	does	license	reciprocity	mean?
• Name	some	copyleft-style	licenses.
• Are	Freeware	and	Shareware	software	considered	FOSS?
• What	is	a	multi-license?



CHAPTER 3
Introduction to FOSS Compliance



FOSS	Compliance	Goals
• Know	your	obligations	(detect	and	track	use	of	FOSS).	You	should	have	a	process	for	
identifying,	tracking	and	archiving	a	list	of	all	FOSS	components	(and	their	respective	
identified	licenses)	from	which	your	software	is	comprised.

• Satisfy	all	the	license	obligations	for	the	FOSS	that	is	used.	Your	program	should	
identify	and	handle	typical	FOSS	use	cases	that	result	from	your	organization’s	
business	practices.



What	Compliance	Obligations	Must	Be	Satisfied?
Depending	on	the	license(s)	involved,	obligations	could	consist	of:
• Attribution	and	Notices. Inclusion	of	copyright	and	license	text	in	the	source	code	
and/or	product	documentation	or	user	interface,	so	that	downstream	users	know	the	
origin	of	the	software	and	their	rights	under	the	licenses	

• Source	code	availability.	Providing	source	code	for	original	work,	for	combined	work	
or	modifications,	as	well	as	build	scripts	(scripts	that	control	the	build	process)

These	obligations	may	trigger	upon	key	events,	such	as:
• External	distribution	
• Whether	you	have	made	modifications



FOSS Conditions & Restrictions
Depending on the FOSS license used, you may need to comply with one or 
more of the following types of conditions and restrictions:
• Retain copyright (and other) notices
• Provide a copy of the license
• Provide notice of modifications
• Modified versions must have a different name to avoid confusion
• Provide access to source code (whether you modified it or not)
• Maintain modified versions (derivative works) under the same license
• Provide attribution
• Do not use the project or copyright holder name or trademark 
• Do not restrict others of the rights granted under the original license
• Termination clauses (if you breach, you lose license)



FOSS Compliance Triggers: Distribution
• Dissemination of material to an outside entity 

• Applications downloaded to a user’s machine or mobile device
• Javascript, web client, or other code that is downloaded to the user’s machine 

• For some FOSS licenses, access via a computer network can be a “trigger 
event.” The trigger is"users interacting with it remotely through a computer 
network."
• Some licenses define the trigger event to include permitting access to software running 

on a server (e.g., all versions of the Affero GPL if the software is modified)



FOSS Compliance Triggers: Modification
• Changes to the existing program (e.g., additions, deletions of code in a file, 

combining components together)
• Modifications may constitute a derivative work, and FOSS authors may limit or 

place obligations on modifications
• Modifications may trigger FOSS obligations, such as:

• Notice of modification
• Providing accompanying source code



FOSS	Compliance	Program
Organizations	who	have	been	successful	at	FOSS	compliance	have	created	their	own
FOSS	Compliance	Programs (consisting	of	policies,	processes,	training	and	tools)	to:
1. Facilitate	effective	usage	of	FOSS	in	commercial	products
2. Respect	FOSS	developer	rights	and	comply	with	license	obligations
3. Contribute	and	participate	in	open	communities



Implementing	Compliance	Practices
Prepare	business	processes	and	sufficient	staff	to	handle:
• Identification	of	the	origin	and	license	of	FOSS	software
• Tracking	FOSS	software	within	the	development	process
• Performing	FOSS	review	and	identifying	license	obligations
• Fulfillment	of	license	obligations	when	product	ships	
• Oversight	for	FOSS	Compliance	Program,	creation	of	policy,	and	compliance	decisions
• Training



Compliance	Benefits
Benefits	of	a	robust	FOSS	Compliance	program	include:

• Increased	understanding	of	the	benefits	of	FOSS	and	how	it	impacts	your	organization

• Increased	understanding	of	the	costs	and	risks	associated	with	using	FOSS	

• Better	relations	with	the	FOSS	community	and	FOSS	organizations

• Increased	knowledge	of	available	FOSS	solutions	



Check	Your	Understanding
• What	does	FOSS	compliance	mean?

• What	are	two	main	goals	of	a	FOSS	Compliance	Program?

• List	and	describe	important	business	practices	of	a	FOSS	Compliance	Program.

• What	are	some	benefits	of	a	FOSS	Compliance	Program?



CHAPTER 4
Key Software Concepts for FOSS Review



What	information	do	you	need	to	gather?
When	analyzing	FOSS	usage,	collect	information	about	the	identity	of	the	FOSS	
component,	its	origin,	and	how	the	FOSS	component	will	be	used.	This	may	include:

• Package	name
• Version

• Original	download	URL
• License	and	License	URL

• Description
• Description	of	modifications

• List	of	dependencies
• Intended	use	in	your	product

• First	product	release	that	will	include	the	package

• Availability	of	source	code
• Where	the	source	code	will	be	maintained

• Whether	the	package	had	previously	been	approved	
for	use	in	another	context

• Inclusion	of	technology	subject	to	export	control
• If	from	an	external	vendor:	

• Development	team's	point	of	contact
• Copyright	notices,	attribution,	source	code	for	vendor	
modifications	if	needed	to	satisfy	license	obligations



How do you want to use to the component?
Common scenarios include:
• Incorporation
• Linking
• Modification
• Translation



Incorporation
A developer may copy portions of a 
FOSS component into your software 
product. 

Relevant terms include:
• Integrating
• Merging
• Pasting
• Adapting
• Inserting



Linking
A developer may link or join a FOSS 
component with your software product. 

Relevant terms include:
• Static/Dynamic Linking
• Pairing
• Combining
• Utilizing
• Packaging
• Creating interdependency



Modification
A developer may make 
changes to a FOSS 
component, including:

• Adding/injecting new 
code into the FOSS 
component

• Fixing, optimizing or 
making changes to the 
FOSS component

• Deleting or removing 
code

Fixing 
Optimizing
Changing

Adding
Injecting

Deleting



Translation
A developer may transform the code 
from one state to another.

Examples include:
• Translating Chinese to English 
• Converting C++ to Java 
• Compiling VHDL in a mask or net list
• Compiling into binary



Development Tools
Development tools may perform 
some of these operations 
behind the scenes.

For example, a tool may inject 
portions of its own code into 
output of the tool.

Inject material

Modify the material

Translate the material



How is the FOSS component distributed?
• Who receives the software?

• Customer/Partner
• Community project

• What format for delivery?
• Source code delivery
• Binary delivery
• Pre-loaded onto hardware



Check Your Understanding
• What	information	is	helpful	in	understanding	how	software	is	licensed?
• What	information	helps	identify	who	is	licensing	the	software?
• What	is	incorporation?
• What	is	modification?
• What	is	linking?
• What	is	translation?
• What	factors	are	important	in	assessing	a	distribution?



CHAPTER 5
Running a FOSS Review



FOSS	Review
• A	key	element	to	a	FOSS	Compliance	Program	is	a	FOSS	Review	process,	through	
which	a	company	can	analyze	and	determine	its	FOSS	obligations		

• The	FOSS	Review	process	includes	the	following	steps:
• Gather	relevant	information
• Analyze	and	determine	license	obligations
• Provide	guidance	in	light	of	company	policy	and	business	objectives



Initiating	a	FOSS	Review

The	FOSS	Review	process	should	be	accessible	to	Program/Product	Managers,	Engineers	
and	others	who	may	be	working	with	FOSS.	
Note:	This	process	may	also	start	when	receiving	FOSS-based	software	 from	outside	
vendors.

Initiate a FOSS 
Review 

Product Manager

Program Manager

Engineer



FOSS	Review	Team

A	FOSS	Review	alerts	and	engages	the	various	support	groups	that	work	together	to	support,	guide,	
coordinate	and	review	the	use	of	FOSS.	This	team	may	include:

• Legal	team	to	identify	and	evaluate	license	obligations

• Scanning	and	tooling	support	team	to	help	identify	and	track	FOSS	usage

• Specialists	working	with	business	interests,	commercial	licensing,	export	compliance,	etc.,	who	may	be	
impacted	by	FOSS	usage

Initiate a FOSS 
Review 

Product Manager

Program Manager

Engineer
Legal ScanningSpecialists



Analyzing	Proposed	FOSS	Usage

The	FOSS	Review	team	should	assess	the	information	it	has	gathered	before	providing	guidance,	including	
for	issues	such	as:
• Completeness,	consistency,	accuracy	(code	scanning	tools	may	be	used	to	scan	for	undisclosed	 FOSS	usage)
• Does	the	declared	license	match	what	is	in	the	code	files?
• Does	the	license	truly	permit	the	proposed	use	of	the	software?		

Legal Scanning Specialists



Working	through	the	FOSS	Review

Working	through	the	FOSS	Review	process	is	interactive.		The	work	crosses	disciplines,	including	engineering,	
business	and	legal	teams,	and	may	require	in	follow-up	discussion	so	that	all	parties	understand	the	
underlying	issues.	Ultimately,	the	process	should	result	in	clear	guidance	on	FOSS	usage.

Initiate a FOSS 
Review 

Product Manager

Program Manager

Engineer
Legal ScanningSpecialists

Work

Guidance



FOSS	Review	Oversight

The	FOSS	Review	process	should	have	sufficient	oversight	in	cases	of	disagreement	between	any	of	the	
parties	involved,	or	when	a	decision	is	particularly	important.

Initiate a FOSS 
Review 

Product Manager

Program Manager

Engineer
Legal ScanningSpecialists

Work

Guidance

Executive Review Committee



Check	Your	Understanding
• What	is	the	purpose	of	a	FOSS	Review?
• What	is	the	first	action	you	should	take	if	you	want	to	use	FOSS	components?
• What	kinds	of	information	might	you	collect	for	a	FOSS	review?
• What	additional	information	is	important	when	reviewing	a	FOSS component	from	an	
outside	vendor?

• What	steps	can	be	taken	to	assess	 the	quality	of	this	information?
• What	should	you	do	if	you	have	a	question	about	using	FOSS?



CHAPTER 6
End to End Compliance Management (Example Process)



Introduction
• Compliance	management	consists	of	a	set	of	actions	that	controls	the	intake	and	
distribution	of	FOSS	used	in	products	(or	"Supplied	Software"	in	the	OpenChain
specification)	

• The	result	of	compliance	due	diligence	is	an	identification	of	all	FOSS	used	in	the	
Supplied	Software	and	confirmation	that	all	FOSS	license	obligations	have	been	or	will	
be	met

• This	chapter	provides	an	example	of	such	a	process,	and	may	serve	as	a	resource	for	
forming	or	improving	your	internal	processes		

Incoming 
FOSS

FOSS identified;
FOSS obligations 

met
Compliance	
Process



Incoming Software

Id
en

tif
ic

at
io

n

Au
di

t

Re
so

lv
e 

Is
su

es

Re
vi

ew
s

Ap
pr

ov
al

s

Re
gi

st
ra

tio
n

No
tic

es

Ve
rif

ic
at

io
ns

Di
st

rib
ut

io
n

Ve
rif

ic
at

io
ns

Proprietary	Software

3rd Party	Software

FOSS

Outgoing Software

Notices & Attributions

Written Offer

Scan or audit source code 
– and –

Confirm origin and
license of source 

code

Resolve any 
audit issues in line with
company FOSS policies

Identify FOSS 
components for 

review

Verify source code 
packages for distribution

– and –
Verify appropriate 

notices are provided

Record approved
software/version
in inventory per 
product and per 

release

Publish source code,
notices and provide 

written offer

Review and approve 
compliance record of 

FOSS software 
components

Compile notices
for publication

Post publication
verifications

Example of Compliance Management End-to-End Process

Process Overview



• Pre-requisites:
The	process	may	begin	with	one	of	these	
events:
- The	development	team	requests	the	
review	of	a	FOSS	component	or	an	
outgoing	release

- Discovery	of	FOSS	being	used	without	
proper	authorization

- Discovery	of	FOSS	being	used	as	part	of	
third	party	software	

• Outcome:	
• A	compliance	record	is	created	(or	
updated)	for	the	FOSS	

• An	audit	is	requested	to	scan	or	review	
the	source	code

Incoming:	
FOSS

Outgoing:	
FOSS	 +	Mods

Id
en

tif
ic

at
io

n

Au
di
t

Re
so
lv
e	

Iss
ue

s

Re
vi
ew

s

Ap
pr
ov
al
s

Re
gi
st
ra
tio

n

No
tic

es

Ve
rif
ic
at
io
n

s

Di
st
rib

ut
io
n

Ve
rif
ic
at
io
n

s

• Steps:	
• Incoming	requests	are	recorded
• Scans	of	entire	platform	may	be	

performed
• Due	diligence	on	any	3rd party	

provided	software
• Recognize	and	review	any	FOSS	

components	 added	to	a	repository	
without	 an	incoming	request

Identify	and	begin	tracking	FOSS	from	all	sources

Identify and Track FOSS Usage



Incoming:	
FOSS

Outgoing:	
FOSS	 +	ModsAu

di
t

id
en

tif
ic
at
io
n

Re
so
lv
e	

Iss
ue

s

Re
vi
ew

s

Ap
pr
ov
al
s

Re
gi
st
ra
tio

n

No
tic

es

Ve
rif
ic
at
io
ns

Di
st
rib

ut
io
n

Ve
rif
ic
at
io
ns

• Pre-requisites:
• Development	team	provides	a	

compliance	record	with	information	
about	the	FOSS	usage	

• In	cases	where	no	record	is	provided	by	
the	development	team,	a	record	can	be	
created	when	the	FOSS	component	 is	
discovered

• Outcome:	
An	audit	report	identifying	the	origins	
and	licenses	of	the	source	code	

• Steps:	
• Source	code	for	the	audit	is	identified
• Source	may	be	scanned	by	a	software	

tool
• “Hits”	from	the	audit	or	scan	are	

reviewed	and	verified	as	to	the	proper	
origin	of	the	code

• Audits	or	scans	are	performed	
iteratively	based	on	the	software	
development	and	release	lifecycles

Identify	FOSS	components	and	their	origin	and	licenses	

Auditing Source Code



Incoming:	
FOSS

Outgoing:	
FOSS	 +	Mods

Re
so

lv
in

g 
Is

su
es

id
en

tif
ic
at
io
n

Au
di
t

Re
vi
ew

s

Ap
pr
ov
al
s

Re
gi
st
ra
tio

n

No
tic

es

Ve
rif
ic
at
io
ns

Di
st
rib

ut
io
n

Ve
rif
ic
at
io
ns

• Pre-requisites:
• A	source	code	audit	or	scan	has	been	

completed	
• An	audit	report	identifies	the	origins	and	

licenses	of	the	source	code	and	flags	files	
that	need	further	investigation

• Outcome:	
A	resolution	for	each	of	the	flagged	
files	in	the	report	and	a	resolution	for	
any	flagged	license	conflict	

• Steps:	
• Provide	feedback	to	the	appropriate	

engineers	to	resolve	issues	in	the	
audit	report	that	conflict	with	your	
FOSS	policy	

• Follow	up	with	engineers	to	confirm	
that	the	 issues	are	resolved

Resolve	all	issues	identified	in	the	audit

Resolving Issues



Incoming:	
FOSS

Outgoing:	
FOSS	+	Mods

R
ev

ie
w

s

id
en
tif
ic
at
io
n

Au
di
t

Re
so
lv
e	
Is
su
es

Ap
pr
ov
al
s

Re
gi
st
ra
tio

n

N
ot
ic
es

Ve
rif
ic
at
io
ns

D
is
tr
ib
ut
io
n

Ve
rif
ic
at
io
ns

Pre-requisites:

• Source	code	has	been	audited	

• All	identified	issues	have	been	
resolved

Outcome:	
• Ensure	the	software	in	the	audit	

report	conforms	with	FOSS	policies	

• Preserve	audit	report	findings	and	
mark	resolved	issues	as	ready	for	the	
next	step	(i.e.	Approval)

Steps:	
• Include	appropriate	authority	 levels	in	

review	staff

• Conduct	FOSS	Reviews	on	audited	source	
code,	review	software	architecture	and	
FOSS	usage	(see	next	slide	for	template)

• Identify	obligations	under	FOSS	licenses

Review	the	audit	report	and	confirm	any	discovered	issues	are	resolved

Performing Reviews



Proprietary

Legend

3rd Party	Commercial

GPL

LGPL

FOSS	Permissive

Function	call
Socket	interface

(fc)

(si)

System	call
(sc)

Shared	headers
(sh)

User	Space

Kernel	Space

Hardware

[Insert	Components]

[Insert	Components]

[Insert	Components]

[Insert	interaction	 method]

[Insert	interaction	 method]

Architecture Review (Example Template)



• Based	on	the	results	of	the	software	audit	and	review	in	previous	steps,	

software	may	or	may	not	be	approved	for	use

• The	approval	should	specify	versions	of	approved	FOSS	components,	the	

approved	usage	model	for	the	component,	and	any	other	applicable	

obligations	under	the	FOSS	license

• Approvals	should	be	made	at	appropriate	authority	levels

Incoming:	
FOSS

Outgoing:	
FOSS	 +	Mods

Ap
pr

ov
al

s

id
en

tif
ic
at
io
n

Au
di
t

Re
so
lv
e	

Iss
ue

s

Re
vi
ew

s

Re
gi
st
ra
tio

n

No
tic

es

Ve
rif
ic
at
io
ns

Di
st
rib

ut
io
n

Ve
rif
ic
at
io
ns

Approvals



• Once	a	FOSS	component	has	been	approved	for	usage	 in	a	product,	it	

should	be	added	to	the	software	inventory	for	that	product	

• The	approval	and	its	conditions	should	be	registered	in	a	tracking	system		

• The	tracking	system	should	make	it	clear	that	a	new	approval	is	needed	for	a	

new	version	of	a	FOSS	component	or	if	a	new	usage	model	is	proposed		

Incoming:	
FOSS

Outgoing:	
FOSS	 +	Mods

Re
gi

st
ra

tio
n

id
en

tif
ic
at
io
n

Au
di
t

Re
so
lv
e	

Iss
ue

s

Re
vi
ew

s

Ap
pr
ov
al
s

No
tic

es

Ve
rif
ic
at
io
ns

Di
st
rib

ut
io
n

Ve
rif
ic
at
io
ns

Registration / Approval Tracking



• Prepare	appropriate	notices	for	any	FOSS	used	in	a	product	release:
- Acknowledge	 the	use	of	FOSS	by	providing	 full	copyright	and	attribution	notices	
- Inform	the	end	user	of	their	product	on	how	to	obtain	a	copy	of	the	FOSS	source	
code	(when	applicable,	for	example	in	the	case	of	GPL	and	LGPL)

- Reproduce	the	entire	text	of	the	license	agreements	for	the	FOSS	code	included	 in	
the	product	as	needed	

Incoming:	
FOSS

Outgoing:	
FOSS	 +	ModsNo

tic
es

id
en

tif
ic
at
io
n

Au
di
t

Re
so
lv
e	

Iss
ue

s

Re
vi
ew

s

Ap
pr
ov
al
s

Re
gi
st
ra
tio

n

Ve
rif
ic
at
io
ns

Di
st
rib

ut
io
n

Ve
rif
ic
at
io
ns

Notices



Incoming:	
FOSS

Outgoing:	
FOSS	 +	Mods

Ve
rif

ic
at

io
ns

id
en

tif
ic
at
io
n

Au
di
t

Re
so
lv
e	

Iss
ue

s

Re
vi
ew

s

Ap
pr
ov
al
s

Re
gi
st
ra
tio

n

No
tic

es

Di
st
rib

ut
io
n

Ve
rif
ic
at
io
ns

• Pre-requisites:
• FOSS	component	 has	been	approved	for	

usage
• FOSS	component	 has	been	registered	in	

the	software	inventory	for	the	release
• Appropriate	notices	have	been	

prepared	

• Outcome:	
• The	distribution	package	contains	only	

software	that	has	been	reviewed	and	
approved

• "Distributed	Compliance	Artifacts"	(as	
defined	in	the	OpenChain
specification),	including	appropriate	
notice	files	are	included	in	the	
distribution	package	or	other	delivery	
method

• Steps:	
• Verify	FOSS	packages	destined	 for	

distribution	have	been	 identified	and	
approved

• Verify	the	reviewed	source	code	matches	
the	binary	equivalents	shipping	in	the	
product

• Verify	all	appropriate	notices	have	been	
included	 to	inform	end-users	of	their	
right	to	request	source	code	for	identified	
FOSS

• Verify	compliance	with	other	identified	
obligations	

Verify	that	distributed	software	has	been	reviewed	and	approved	

Pre-Distribution Verifications



Incoming:	
FOSS

Outgoing:	
FOSS	 +	Mods

Di
st

rib
ut

io
n

id
en

tif
ic
at
io
n

Au
di
t

Re
so
lv
e	

Iss
ue

s

Re
vi
ew

s

Re
gi
st
ra
tio

n

No
tic

es

Ve
rif
ic
at
io
ns

Ap
pr
ov
al
s

Ve
rif
ic
at
io
ns

• Pre-requisites:
• All	pre-distribution	verification	has	been	

completed	and	no	issue	is	discovered

• Outcome:	
• Obligations	to	provide	accompanying	

source	code	are	met

• Steps:	
• Provide	accompanying	source	code	

along	with	any	associated	build	tools	
and	documentation	(e.g.,	by	uploading	
to	a	distribution	website	or	including	in	
the	distribution	package)	

• Accompanying	source	code	is	
identified	with	labels	as	to	which	
product	and	version	to	which	it	
corresponds

Provide	accompanying	source	code	as	required	

Accompanying Source Code Distribution



Incoming:	
FOSS

Outgoing:	
FOSS	 +	Mods

Ve
rif

ic
at

io
ns

id
en

tif
ic
at
io
n

Au
di
t

Re
so
lv
e	

Iss
ue

s

Re
vi
ew

s

Ap
pr
ov
al
s

No
tic

es

Ve
rif
ic
at
io
ns

Di
st
rib

ut
io
n

Re
gi
st
ra
tio

n

• Pre-requisites:
• Accompanying	source	code	is	provided	

as	may	be	required
• Appropriate	notices	have	been	

prepared	

• Outcome:	
• Verified	Distributed	Compliance	

Artifacts	are	appropriately	provided

• Steps:	
• Verify	accompanying	source	code	(if	

any)	has	been	uploaded	or	distributed	
correctly		

• Verify	uploaded	or	distributed	source	
code	corresponds	to	the	same	version	
that	was	approved	

• Verify	notices	have	been	properly	
published	and	made	available

• Verify other	 identified	obligations	are	
met

Validate	compliance	with	license	obligations

Final Verifications



Check Your Understanding
• What	is	involved	in	compliance	due	diligence	(describe	the	steps	at	a	high	level)?
• What	types	of	issues	may	need	to	be	resolved	as	part	of	compliance	management?
• Who	should	be	involved	in	reviewing	audit	results?
• What	does	an	architecture	review	look	for?
• What	should	be	included	in	the	FOSS	Notices?
• What	needs	to	be	distributed	for	code	used	under	a	copyleft	license?



CHAPTER 7
Avoiding Compliance Pitfalls



Compliance	Pitfalls
This	chapter	will	describe	some	potential	pitfalls	to	avoid	in	the	compliance	process:
1. Intellectual	Property	(IP)	pitfalls
2. License	Compliance	pitfalls
3. Compliance	Process	pitfalls



Intellectual	Property	Pitfalls
Type	&	Description Discovery Avoidance

Unplanned	inclusion	of	copyleft	
FOSS	into	proprietary	or	3rd	party	
code:

This	type	of	failure	occurs	during	the	
development	process	when	engineers	
add	(or	cut	and	paste)	FOSS	code	into	
source	code	that	is	proprietary	(to	you	to	
you	or	to	a	third	party)	in	conflict	with	
your	FOSS	policies.

This	type	of	failure	can	be
discovered	by	scanning	or	auditing	the	

source	code	for	possible
matches	with:
• FOSS	source	code	
• Copyright	notices

Automated	source	code
scanning	tools	may	be	used	for
this	purpose

This	type	of	failure	can	be
avoided	by:
• Offering	training	to	engineering	staff	

to	bring	awareness	to	compliance	
issues	and	to	the	different	types	and	
categories	of	FOSS	licenses	and	the	
implications	of	including	FOSS	
source	code	in	proprietary	source	
code

• Conducting	regular	source	code	
scans	or	audits	for	all	the	source	
code	in	the	build	environment	
(proprietary,	3rd party	and	FOSS)



Intellectual	Property	Pitfalls
Type	&	Description Discovery Avoidance

Unplanned	linking	of	copyleft	FOSS	
into	proprietary	source	code	in	
certain	cases		(or	vice	versa):	

This	type	of	failure	occurs	as	
a	result	of	linking	software	
(FOSS,	proprietary,	3rd party)
that	have	conflicting	or	incompatible	
licenses.	The	legal	effect	of	linking	is	
subject	to	debate	in	the	FOSS	community.

This	type	of	failure	can	be	
discovered	using	the	
dependency	 tracking	tool	
that	allows	you	to	discover
linkages	between
different	software
components.

This	type	of	failure	can	be
avoided	by:
1. Offering	training	to	engineering	

staff	to	avoid	linking	software	
components	with	licenses	that	
conflict	with	you	FOSS	policies	
which	will	take	a	position	on	
these	 legal	risks

2. Continuously	 running	the	
dependency	 tracking	tool	over	
your	build	environment

Inclusion	of	proprietary	
code	into	copyleft	FOSS	through	
source	code	modifications	

This	type	of	failure	can	be
discovered	using	the	audits	or	scans	to	
identify	and	analyze	the	source	code	
you	introduced	to	the	FOSS	component.

This	type	of	failures	can	be
avoided	by:
1. Offering	training	to	engineering	

staff
2. Conducting	regular	code	audits



License	Compliance	Pitfalls
Type	&	Description	 Avoidance

Failure	to	Provide	Accompanying	
Source	Code	

This	type	of	failure	can	be	avoided	by	making	source	code
publishing	a	checklist	item	in	the	product	release	cycle
before	the	product	becomes	available	in	the	market	place.

Providing	the	Incorrect	Version	of	
Accompanying	Source	Code

This	type	of	failure	can	be	avoided	by	adding	a	verification	
step	into	the	compliance	process	to	ensure	that	the	accompanying	source	

code	for	the	binary	version	is	being	published.

Failure	to	Publish	Accompanying	
Source	Code	for	FOSS	Component	
Modifications	

This	type	of	failure	can	be	avoided	by	adding	a	verification		
step	into	the	compliance	process	to	ensure	that	source	code	for	
modifications	are	published,	rather	than	only	the	original	source	code	for	the	
FOSS	component

License	Compliance	Pitfalls



License	Compliance	Pitfalls
Type	&	Description	 Avoidance

Failure	to	mark	FOSS	
Source	Code	
Modifications:

Failure	to	mark	FOSS	source
code	that	has	been	changed	or	
failure	to	include	a	description
of	the	changes.

This	type	of	failure	can	be	avoided	by:
1. Adding	source	code	modification	marking	as	a	verification	step	before	

releasing	the	source	code	
2. Offering	training	to	engineering	staff	to	ensure	they	update	copyright	

markings	or	license	information	of	all	FOSS	or	proprietary	software	that	
is	going	to	be	released	to	the	public



Compliance	Process	Failures
Description Avoidance	 Prevention

Failure	by	developers	to	
seek	approval
to	use	FOSS

This	type	of	failure	can	be	
avoided	by	offering	training	to	
Engineering	staff	on	the	
company’s	FOSS	policies	and	
processes.

This	type	of	failure	can	be	
prevented	by:
1. Conducting	periodic	full	scan	for	the	

software	platform	to	detect	any	
“undeclared” FOSS usage

2. Offering	training	to	engineering	staff	
on	the	company's	FOSS	policies	and	
processes

3. Including	compliance	in	the	
employees	performance	review

Failure	to	take	the	
FOSS	training

This	type	of	failure	can	be	
avoided	by	ensuring	that	the	
completion	of	the	FOSS	training	is
part	of	the	employee’s
professional	development	plan	
and	it	is	monitored	for	completion
as	part	of	the	performance	review	

This	type	of	failure	can	be	
prevented	by	mandating
engineering	staff	to	take	the
FOSS	training	by	a	specific	date	



Compliance	Process	Failures
Description Avoidance	 Prevention

Failure	to	audit	
the	source	code

This	type	of	failure	can	be	avoided	by:
1. Conducting	periodic	source	code	scans/audits	
2. Ensuring	that	auditing	is	a	milestone	in	the	

iterative	development	process	

This	type	of	failure	can	be	
prevented	by:
1. Providing	proper	staffing	as	to	not	

fall	behind	in	schedule
2. Enforcing	periodic	audits	

Failure	to	resolve	
the	audit	findings
(analyzing	the	
"hits"	reported
by	a	scan	tool	or	audit)

This	type	of	failure	can	be	avoided	by	
not	allowing	a	compliance	ticket	to	be
resolved	(i.e.	closed)	if	the	audit	report	
is	not	finalized.	

This	type	of	failure	can	be	
prevented	by	implementing	blocks	 in	

approvals	in	the	FOSS	compliance	
process

Failure	to	seek	review	of	
FOSS	in	a	timely	manner

This	type	of	failure	can	be	avoided
by	initiating	FOSS	Review	requests	early
even	if	engineering	did	not	yet
decide	on	the	adoption	of	the	FOSS
source	code

This	type	of	failure	can	be	
prevented	through	education



Ensure	Compliance	Prior	to	Product	Shipment
• Companies	must	make	compliance	a	priority	before	any	product	(in	
whatever	form)	ships

• Prioritizing	compliance	promotes:
• More	effective	use	of	FOSS	within	your	organization
• Better	relations	with	the	FOSS	community	and	FOSS	organizations



Establishing Community Relationships
As	a	company	that	uses	FOSS	in	
commercial	product,	it	is	best	to	
create	and	maintain	a	good	
relationship	with	the	FOSS	community,	
in	particular,	the	specific	communities	
related	to	the	FOSS	projects	you	use	
and	deploy	in	your	commercial	
product.	

In	addition,	good	relationships	with	
FOSS	organizations	can	be	very	helpful	
in	advising	on	best	way	to	be	
compliant	and	also	help	out	if	you	
experience	a	compliance	issue.

Good	relationships	with	the	software	
communities	may	also	be	helpful	for	
two-way	communication:	upstreaming	
improvements	and	getting	support	
from	the	software	developers.



Check	Your	Understanding
• What	types	of	pitfalls	can	occur	in	FOSS	compliance?	
• Give	an	example	of	an	intellectual	property	failure.
• Give	an	example	of	a	license	compliance	failure.
• Give	an	example	of	an	compliance	process	failure.
• What	are	the	benefits	of	prioritizing	compliance?
• What	are	the	benefits	of	maintaining	a	good	community	relationship?


