CIP @ Siemens Mobility
Use Cases

Siemens Mobility – Mobility Management
Benjamin Schilling, Yasin Demirci, October 2019
Agenda

1. Harmonization use case
 Replacement of old Linux kernel versions

2. Maintenance use case
 Benefit from long-term maintained Debian packages

3. Security use case
 Create a common platform for IEC 62443 SL-3 ready products

4.-6 Security challenges
 IEC 62443 SL-3 challenges and their OSS solutions
1. Harmonization use case
Replacement of old Linux kernel versions
1. Harmonization use case
Replacement of old Linux kernel versions

Rail automation specifics

- Long product life-times (20 to 30 years)
- Patching of products is not easy
- Requires safety assessment & certification
- Access to devices is difficult (e.g. no remote access)

Numerous Linux kernel versions in product portfolio

- Hard to maintain
- Even harder to keep up with vulnerability management

Solution: reduction of Linux kernel variants

- Using CIP kernel as basis for product portfolio
2. Maintenance use case

Benefit from long-term maintained Debian packages
2. Maintenance use case
Benefit from long-term maintained Debian packages

Benefits of Debian
- Packages come preconfigured (lower effort for integration, compared to „make …“)
- Easier management of Open Source Software (license compliance, vulnerability management, …)
- Reduced build times through ISAR using binary packages
- Covers all required CPU architectures

Requirement from a rail automation customer
- “The used Linux distribution shall be Debian for cybersecurity reasons”

CIP Core
- Efforts for Debian LTS maintenance are a perfect fit for this use case
3. Security use case
Create a common platform for IEC 62443 SL-3 ready products
3. Security use case
Create a common platform for IEC 62443 SL-3 ready products

<table>
<thead>
<tr>
<th>CIP Security WG</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Participate in the CIP Security working group</td>
</tr>
<tr>
<td>▪ Provide guidelines for IEC 62443 compliance for products using the CIP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Siemens Mobility OSS contributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Contribute security building blocks to OSS community</td>
</tr>
<tr>
<td>▪ Peer review increases security</td>
</tr>
<tr>
<td>• Security by obscurity never works!</td>
</tr>
<tr>
<td>▪ Increase supported hardware</td>
</tr>
<tr>
<td>▪ Possible increase of features through collaboration</td>
</tr>
<tr>
<td>▪ Increase the overall security for the industrial automation domain</td>
</tr>
</tbody>
</table>
4. IEC 62443 SL-3 Challenge
Certificate enrollment in closed networks
4. Challenges
Certificate enrollment in closed networks

IEC 62443 requirement for SL-3
- When a Public Key Infrastructure is used, the device shall integrate into a system which ensures that certificates are enrolled securely.

Current situation
- Most rail automation products don’t use certificates
- If certificates are used they are typically self-signed
- Typically no integration with PKI possible
4. Solution
Use the Certificate Management Protocol (CMP)

Certificate Management Protocol
- Specified in RFC4210
- Allows to enroll, renew and revoke certificates
- Can be used to distribute CRLs
- Key material is generated on the device only
- Already used in the rail automation domain (UNISIG 137 standard)

Flexible support of transport protocols
- Message exchange can be done via various protocols
- Plain TCP
- HTTP
- Using files (e.g. SCP, usb drive, …)
4. Solution
Use the Certificate Management Protocol (CMP)

Noteworthy Implementations

CMPforOpenSSL (https://github.com/mpeylo/cmpossl)
- Initially started by Nokia, Siemens joined several years ago
- Already integrated in many industrial products
- Integrated in upcoming OpenSSL 3.0

CMP in memory constrained environments
- mbedCMP (https://github.com/siemens/mbedCMP)

For less constrained environments
- Bouncy Castle (https://www.bouncycastle.org/)
5. IEC 62443 SL-3 Challenge

OSS has to access credentials in a secure way
5. Challenge
OSS has to access credentials in a secure way

IEC 62443 requirement for SL-3
- Credentials which are used by the component shall be protected by hardware means

Typical OSS components load credentials from files
- Usually the password for the private key is stored in plain text in a configuration file

Many available hardware key store implementations
- Different functionality
- Different software interfaces
5. Solution
The Trust Anchor API

Trust Anchor functionality
- Derive individual passwords for each device
- Seed the random number generator (esp. for devices with low entropy)
- Get an UUID identifying the device

Derive hardware-specific passwords
- Allows applications to use these passwords to protect its credentials
- E.g. by an OpenSSL engine
5. Solution
The Trust Anchor API

Bound to the hardware
- Requires live OS access to get the password
- Reading the flash/stealing the HDD does not reveal the credentials

Designed for embedded systems
- Limited feature set allows to use various kinds of embedded hardware (no TPM required)

Plugin architecture
- Hardware specific implementation of the trust anchor can be loaded as a plugin
- Allows hardware manufacturers to implement hardware access (driver / hardware plugin)
- No changes in applications required for different hardware
6. IEC 62443 SL-3 Challenge
Securely boot x86 devices
6. Challenge
Securely boot x86 systems

IEC 62443 requirement for SL-3
- The products manufacturers root of trust shall be used to verify the boot process.

Root of trust
- For x86 UEFI devices the manufacturer root of trust has to be installed in the UEFI

Dual boot
- A/B partition scheme required for reliable remote software update
6. Solution
Use efibootguard

Open Source UEFI Bootloader
- https://github.com/siemens/efibootguard
- GPL-2
- Already supports `swupdate` for A/B partition update
- UEFI Secure Boot support planned for Q3/2020

Possible scheme for Secure Boot implementation, final solution t.b.d.
Outlook: Siemens Mobility OSS Projects

New projects

- Trust Anchor API
 Target: Q2/20

Sponsorship

- CMPforOpenSSL/openSSL 3.0
 Target: Q1/20

- efibootguard – Secure Boot
 Target: Q3/20

- ISAR
 Continuous

A lot of space for upcoming contributions!
Stay safe and secure

Contact
Benjamin Schilling
schilling.benjamin@siemens.com

Contact
Yasin Demirci
yasin.demirci@siemens.com