Testing Overview

Chris Paterson, Renesas
Michael Adler, Siemens
CIP Testing Working Group
Automated Testing Summit Lyon, 31/10/19
Introduction

• Michael Adler
 • Linux Consultant, Siemens AG
 • Working on Linux container solutions and firmware updates for embedded devices
 • Interested in functional programming and modern programming languages
 • Passionate NixOS user

• Chris Paterson
 • Project lead in the Linux team at Renesas Electronics Europe
 • Heading the “testing” working group for the CIP project
 • Newly found love for CI
Civil Infrastructure Platform

Establishing an **open source base layer** of industrial grade software to enable the use and implementation of software building blocks for civil infrastructure

- Super Long-Term Support(ed) Linux Kernels – 10+ years
- Real Time Linux
- CIP Core – Reference filesystem
- Security – IEC 62443 certification
The backbone of CIP are the member companies:

- **Renesas**
- **Siemens**
- **Toshiba**

The budget allocated by member companies is used to support Open Source Projects such as:

- **KernelCI**
- **debian**
- **Real-Time Linux**

Developers and maintainers contribute to and use these projects, which can be optionally funded by member companies.

Automated Testing Summit Lyon, 2019
Testing Goals

• Provide an environment to test CIP software projects on the CIP reference hardware
 • SLTS Kernel
 • SLTS RT Kernel
 • CIP Core
 • Tiny profile (Deby)
 • Generic profile (ISAR)
 • SW update
 • [...]

• Open source
• Collaboration
The CIP project is currently supporting the following reference hardware:

<table>
<thead>
<tr>
<th>Device</th>
<th>SLTS v4.4</th>
<th>SLTS v4.19</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM335x Beaglebone Black (Armv7)</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>QEMU x86_64</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>RZ/G1M iWave Qseven Dev Kit (Armv7)</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>RZ/G2M HopeRun HiHope (Armv8)</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>SIMATIC IPC227E (x86-64)</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>OpenBlocks IoT VX2 (x86-64)</td>
<td></td>
<td>✔</td>
</tr>
</tbody>
</table>

Currently testing ~30 Kernel configurations (including some RT configs) across the two SLTS versions.
Architecture Overview

Source
- CIP Kernel
- LTS-rc
- CIP Core
- SWUpdate

Build
- **GitLab runner @ k8s master**
 - k8s pod (build)
 - k8s pod (build)

Test
- **Artifact Storage**
- **Built Artifacts**
- **LAVA Master**
 - LAVA Worker
 - LAVA Worker

Location key
- GitLab.com
- AWS EC2
- AWS EC2 on-demand
- Local

CIP Reference Hardware

Automated Testing Summit Lyon, 2019
Tests (early days!)

• Currently CIP are running the following tests:
 • Boot test
 • `uname -a`
 • Spectre/Meltdown checker
 • https://github.com/Linaro/test-definitions/tree/master/automated/linux/spectre-meltdown-checker-test

• In progress:
 • LTP
 • `ltp-cve-tests`, `ltp-dio-tests`, `ltp-fs-tests`, `ltp-ipc-tests`, `ltp-math-tests`, `ltp-open-posix-tests`, `ltp-sched-tests`, `ltp-syscalls-tests` and `ltp-timers-tests`
 • https://github.com/Linaro/test-definitions/tree/master/automated/linux/ltp
 • https://github.com/Linaro/test-definitions/tree/master/automated/linux/ltp-open-posix
Next Steps

• Improve job reporting
 • Results in GitLab/LAVA/email are easily lost
 • We plan to submit all test results to the KernelCI project

• Increase test coverage
 • CIP Core (reference filesystem)
 • kselftests, Jitterdebugger, Linaro test definitions, Benchmarks, Hardware testing (CAN/PCIe/USB etc.)

• Add more boards/LAVA workers
 • Speed up testing
 • Improve board availability

• Collaboration with the Automated Testing Community
CIVIL INFRASTRUCTURE PLATFORM

Tooling
gitlab-cloud-ci
Container-based CI-infrastructure from Scratch
Motivation

- **ISAR**: Integration System for Automated Root filesystem generation
 - Similar to Yocto, but use upstream deb-packages as much as possible
 - => No need to maintain your own Linux distribution anymore
 - Perform cross-architecture builds
 - Very versatile and flexible, but also easy to make mistakes => CI solution desired
 - Used by Civil Infrastructure Project, Siemens and others

- **Problem**: Standard (Gitlab) CI runners do not work with ISAR-based builds *in general*
 - Reasons:
 - `binfmt_misc` is not namespace-aware (yet!), but is required for cross-architecture builds
 - debootstrap: some (minor) issues with `CAP_MKNOD`
gitlab-cloud-ci
Possible Solutions

- **“Hard” Way**
 - Make `binfmt_misc` user namespace aware and merge it upstream
 - Fix all issues with `debootstrap` (mostly working around MKNOD issue)
 - Not *that* hard, but would take some years until it is merged upstream and available in distros

- **Easy Way**
 - Just use privileged containers (CAP_SYS_ADMIN)
 - … or use a good old-fashioned VM after all

Which way to go?

Both ways! But start with the easy one and wait for the hard one 😊
• Following the “Easy“ Way

• Let’s make a wishlist! It should be:
 • **Fast**: CI feedback time must be short (fast CPU, fast SSD, fast network)
 • **Scalable**: Perform many CI jobs in parallel
 • **Secure**: Can we always trust our payload? Isolation would be nice!
 • **Cheap**: opex, capex 😊
 • **Possibly Reliable**: SA or HA, reproducible setup (automated)
 • Must be compatible/usable with Gitlab
 • Avoid vendor lock-in
 • Should work on-premise and in the cloud
gitlab-cloud-ci
Enter gitlab-cloud-ci

- gitlab.com/cip-project/cip-testing/gitlab-cloud-ci
 - Developed internally at Siemens and published under Apache-2.0 license
 - Written in Python 3
 - Yet another Kubernetes bootstrapping tool? Like Kops or Kubespray?
 - Or is it more a “general tool” like Terraform?
 - Neither! gitlab-cloud-ci is a thin wrapper ("glue code") around existing battle-proven tools

- **Features**
 - Create and bootstrap Kubernetes cluster (SA/HA) from scratch
 - Choose between AWS and on-premise setup
 - Heavy-lifting is done by kops/kubeadm
 - Deploy dashboard, cluster-autoscaler, Gitlab runners, binfmt_misc “hack” and more
 - Everything that can be created can be destroyed as well
 - Basic lifecycle management functionality
gitlab-cloud-ci
Real-World Usage

• **CIP**: Has been permanently in-use for almost 6 months:
 • 100% uptime for master node (thanks AWS)
 • Occasionally minor hick-ups with cluster-autoscaler (or AWS)
 • AWS + Kubernetes autoscaling is rather slow (a few minutes) and sometimes results in timeouts
 • Might improve once we upgrade to latest Kubernetes + cluster-autoscaler add-on
 • Started small (m5d.xlarge 4 vCPUs, 16GB mem, 1xNVMe SSD), but recently went up to m5d.4xlarge (16vCPUs, 64GB mem, 2xNVMe SSD)
 • Dynamically scaling between 0 and 40 slave nodes

• **Siemens**: Used for internal Gitlab instance (on-premise setup)
Contributions are welcome!

- Contributions are welcome!
- … bug reports too 😊

Planned Features:
- Add cluster monitoring (Issue #4)
- Mixed EC2 instance sizes (configurable on a per-job basis) (Issue #6)
- More configuration options (Issue #3)
- Profiles
- Kata Containers

Ideas:
- GCE integration (cheaper than AWS because master node is free)
• Simple ‘tool’ that manages the build and test process for the CIP Linux SLTS Kernels.
• Consists of two Docker containers:
 • ‘Build’
 • Contains: Linux Kernel build scripts & dependencies, CIP Kernel configs repo
 • Appropriate cross-toolchain downloaded on the fly
 • Builds the Kernel for the specified configuration
 • Stores build artifacts in GitLab’s artifact storage
 • ‘Test’
 • Contains: LAVA test job generation scripts, LAVA and AWS CLI tools
 • Uploads build artifacts to AWS S3 storage (so LAVA workers can access them)
 • Creates LAVA job definitions for the specified platforms and tests
 • Submits LAVA jobs and waits for the results

• https://gitlab.com/cip-project/cip-testing/linux-cip-ci
```yaml
variables:

- GIT_STRATEGY: clone
- GIT_DEPTH: 10
- DOCKER_DRIVER: overlay2
- DOCKER_IMAGE_TAG: v2

build:arm64_renesas_defconfig:
  stage: build
  image: registry.gitlab.com/clip-project/clip-testing/linux-cip-ci:build-DOCKER_IMAGE_TAG
  variables:
    - BUILD_ARCH: arm64
    - CONFIG: renesas_defconfig
    - CONFIG_LOC: clip-kernel-config
    - DEVICES: r8a774c0-ek874 r8a774a1-hihope-rzq2n-ex
    - DTBS: r8a774c0-ek874.dtb r8a774a1-hihope-rzq2n-ex.dtb
  script:
    - /opt/build_kernel.sh
  artifacts:
    name: "SCI_JOB_NAME"
    when: always
    paths:
      - output

test:arm64_renesas_defconfig:
  stage: test
  needs: [build:arm64_renesas_defconfig]
  image: registry.gitlab.com/clip-project/clip-testing/linux-cip-ci:test-DOCKER_IMAGE_TAG
  variables:
    - GIT_STRATEGY: none
  script:
    - /opt/submit_tests.sh
  artifacts:
    name: "SCI_JOB_NAME"
    paths:
      - output
```

Automated Testing Summit Lyon, 2019
Questions?
Thank you!

Contact

#cip (freenode) cip-dev@lists.cip-project.org
patersonc chris.paterson2@renesas.com
therisen michael.adler@siemens.com
Links

• CIP testing wiki page
 • https://wiki.linuxfoundation.org/civilinfrastructureplatform/ciptesting/centralisedtesting

• CIP reference hardware
 • https://wiki.linuxfoundation.org/civilinfrastructureplatform/ciptesting/cipreferencehardware

• CIP Kernel Configurations
 • https://gitlab.com/cip-project/cip-kernel/cip-kernel-config

• CIP LAVA master
 • https://lava.ciplatform.org/

• CIP lava-docker
 • https://gitlab.com/cip-project/cip-testing/lava-docker

• CIP Kubernetes k8s pod manager
 • https://gitlab.com/cip-project/cip-testing/gitlab-cloud-ci

• CIP Kernel CI build tool
 • https://gitlab.com/cip-project/cip-testing/linux-cip-ci